
Trustworthy Machine Learning through Data-Specific Indistinguishability

Hanshen Xiao 1 2 Zhen Yang 2 G. Edward Suh 1

Abstract
This paper studies a range of AI/ML trust con-
cepts, including memorization, data poisoning,
and copyright, which can be modeled as con-
straints on the influence of data on a (trained)
model, characterized by the outcome difference
from a processing function (training algorithm).
In this realm, we show that provable trust guar-
antees can be efficiently provided through a new
framework termed Data-Specific Indistinguisha-
bility (DSI) to select trust-preserving random-
ization tightly aligning with targeted outcome
differences, as a relaxation of the classic Input-
Independent Indistinguishability (III). We estab-
lish both the theoretical and algorithmic founda-
tions of DSI with the optimal multivariate Gaus-
sian mechanism. We further show its applica-
tions to develop trustworthy deep learning with
black-box optimizers. The experimental results
on memorization mitigation, backdoor defense,
and copyright protection show both the efficiency
and effectiveness of the DSI noise mechanism.

1. Introduction
The remarkable advances in artificial intelligence (AI) and
machine learning (ML) in recent years have been largely
driven by optimizing loss functions based on predictive
accuracy. Despite this success, the widespread deployment
of AI has raised a range of societal and ethical concerns,
particularly related to the use of data and its impact on
trained models. These concerns have spurred the emergence
of research on trustworthy data processing.

In this paper, we present a unified and systematic framework
for a critical subset of trust concepts. These concepts can
be modeled as constraints on the differences between the
outputs of an algorithm (a machine learning training algo-
rithm) for a given input (dataset) and an additional set of
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reference inputs (datasets). We formalize the framework of
Differential Trust (DT) as follows. Given a processing func-
tion F , a target input U, and a group of reference datasets
R[1:m] = {R1, · · · ,Rm}, (some of) the outputs F(Ri) de-
rived from the reference datasets are assumed to be safe; our
objective is to regulate the divergence between the output
F(U) generated from U and the outputs F(Ri) from the
references. Several concrete examples are listed below.

Memorization: Unintended memorization is a common is-
sue in large models, where the model learns specific details
or features from individual examples rather than capturing
the common patterns of the underlying data distribution
(Tirumala et al., 2022). In the context of language mod-
els (LMs), mitigating memorization typically involves de-
fending against queries that attempt to regurgitate sensitive
training data verbatim (Zanella-Béguelin et al., 2020). For
instance, (Tirumala et al., 2022; Carlini et al., 2022) define
memorization behaviors as follows: given a concatenated
context from the input training set in a form [p|s], the LM is
able to exactly reproduce s when prompted with p. Suppose
[p|s] is uniquely contained in a sample u ∈ U, and F is a
training algorithm. By selecting a reference R = U \ u, the
resulting model F(R) can be considered safe against the
memorization of [p|s], as this feature is never seen by the
model during training (Carlini et al., 2021).

Data Poisoning (Backdoor) Attack: By injecting specially-
crafted training data, an attacker can manipulate the training
process to embed hidden, malicious behavior into the model
while maintaining its performance on normal data. For ex-
ample, adding a specific patch to an image might cause the
model to misclassify it when a particular sticker is present
(Gu et al., 2017; Tran et al., 2018). Existing empirical de-
fense largely relies on filtering suspicious samples (Jagielski
et al., 2018; Baracaldo et al., 2017) or robust gradient aggre-
gator (Tran et al., 2018; Kane et al., 2024), while providing
provable guarantees remains challenging. In the DT frame-
work, consider a (virtual) distributed setup where U consists
of data collected from m sources, with one of them being
poisoned. Let Ri represent the subset of U after excluding
all data provided by the i-th source. Among the m models
F(Ri), i ∈ [1 : m] = {1, 2, . . . ,m}, there is guaranteed to
be at least one model trained entirely on benign data.

Copyright and Contribution: Ensuring training samples
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on an Internet scale entirely free of copyrighted materials is
often impractical (Vyas et al., 2023). In addition, the recent
success of generative models has raised growing concerns,
particularly among the artist community where generated
images or music can closely mimic specific artistic styles,
potentially infringing on intellectual property rights (Shan
et al., 2023; Dhariwal et al., 2020). Furthermore, in col-
laborative learning (Sim et al., 2020) where a model is
trained using data from multiple parties, how to quantify
their individual contributions to acknowledge ownership or
determine compensation remains open. In these use cases, a
reference R can be selected as the subset of U that excludes
all samples from a particular party (e.g., an artist, author, or
data source). Consequently, F(R) serves as a reference that
excludes influence from the particular party’s data.

1.1. Indistinguishability

To build provable DT guarantees, we aim to ensure our
target output F(U) is indistinguishable from the safe ref-
erences F(Ri), i.e., probabilistically, F(U) is distributed
sufficiently close to each F(Ri). In the context of above
examples, this presents a guarantee to either simultaneously
protect copyright or prevent memorization for each differ-
ential data subset U \ Ri, or maintain robustness against
backdoor attacks provided the model remains close to the
one that is only trained with a benign dataset Ri.

Historically, the idea of (input-independent) indistinguisha-
bility traces back to Shannon’s pioneering work on perfecrt
secrecy (Shannon, 1949), which laid the foundation for both
Differential Privacy (DP) (Dwork et al., 2006b) and modern
cryptography (Goldwasser & Micali, 1984). We summarize
this framework below.

Definition 1.1 ((γ̄, ψ) Input-Independent Indistinguishabil-
ity (III)). Given a divergence measure ψ, a mechanism
M : U∗ → O∗ satisfies (γ̄, ψ)-III if for arbitrary two input
selections Ū and Ū′ differing in some objective feature,

sup
Ū,Ū′

ψ
(
PM(Ū)∥PM(Ū′)

)
≤ γ̄. (1)

(1) characterizes, given the output M(U) for some input
U, the hardness to distinguish U from two arbitrary candi-
dates Ū and Ū′ in the worst case. By properly selecting the
objective feature as the sensitive part of a secret input U to
protect, Definition 1.1 can capture many classic privacy def-
initions. For example, DP aims to obscure the participation
of an individual record and we may select Ū and Ū′ as a pair
of adjacent datasets differing in one datapoint; accordingly,
when we select ψ varying from maximal, Hockey-Stick
and Rényi divergence, (1) leads to pure ϵ-DP (Dwork et al.,
2006b), approximate (ϵ, δ)-DP (Dwork et al., 2006a) and
Rényi DP (Mironov, 2017). Recent works have also shown
applications of DP to mitigate memorization (Carlini et al.,
2021) or approximate unlearning (Gupta et al., 2021).

Figure 1. Illustration of applications of DSI noise in defending
against poisoning attacks. Provided an input training data U col-
lected from three data sources including an unknown malicious
entity, one reference subset S2 is fully clean; the injected noise
e(U) ensures that produced model F(U) + e(U) is statistically
close to the noisy model F(S2)+e(U) trained on fully clean data.

1.2. From Input-Independent Indistinguishability (III)
to Data-Specific Indistinguishability (DSI)

Although both privacy protection — focused on confidential-
ity protection as in DP and PAC Privacy (Xiao & Devadas,
2023; Xiao et al., 2024; Sridhar et al., 2025) — and DT
leverage indistinguishability, their underlying motivations
are different. A key insight we will highlight in this work
is that input independence is not necessary for many DT
applications, where we only need indistinguishability with
respect to a specific set of safe reference inputs, enabling
much sharpened utility-trust tradeoff.

When Input Independence is Needed: A widely accepted
approach to measuring privacy risk is to quantify the addi-
tional knowledge gained through leakage—specifically, how
much the leakage alters the adversary’s prior belief and aids
their inference about sensitive information. III (Definition
1.1) requires satisfactory indistinguishability (1) holds for
arbitrary input pairs. This is necessary if we want to up-
per bound the additional knowledge1 for an adversary with
arbitrary belief and optimal strategy (Shannon, 1949).

For confidentiality protection, to ensure a processing func-
tion F with satisfactory III guarantees, the introduced mod-
ification, (e.g., noise), should not leak information about
the secret input U itself. Therefore, most III randomization
approaches, including exponential mechanism (McSherry
& Talwar, 2007) and Laplace/Gaussian noise mechanism
(Dwork et al., 2014) in DP, are input-independent2 and only
determined by the public information of F to privatize.

As a global guarantee, clearly III shows a sufficient condition
to ensure formal mitigation for DT. However, from a practice
standpoint, it faces two challenges:

i) a worst-case bound (1) may fail to account for varying in-
distinguishability demands among references. For instance,

1Alternatively, the additional knowledge can be defined by the
optimal posterior success rate of an adversarial inference on the
sensitive information after observing the leakage minus the optimal
a priori success rate (Xiao & Devadas, 2023).

2As a clarification, input-dependent randomness could still
lead to III, for example, noise calibrated with smooth sensitivity
(Nissim et al., 2007), but our proposed input-dependent Gaussian
as defined later in Definition 1.2 generally cannot ensure III.
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in the example of data contribution mentioned earlier, a user
may wish to allocate different budgets based on data quality
or preferences for the i-th provider’s data usage;

ii) III is also notorious for its heavy utility trade-offs. The
required level of randomness to achieve III has been ex-
tensively studied and is often constrained by the curse of
dimensionality (Hardt & Talwar, 2010; Bassily et al., 2014;
Xiao et al., 2023a), where the utility compromise increases
with the dimensionality of the output.

DSI and Noise Mechanism: With above understanding,
in applications where our inputs are public, for example
artists are willing to publish and allow others to have access
to their works once their intellectual property is properly
protected, or in the scenarios where we do not target infor-
mation leakage but the governance of AI models against
specific adversarial strategies, for example memorization
mitigation resisting prompt elicitation to reproduce specific
input contexts, both F(U) and safe references F(Ri) can
be freely used as public parameters in mechanism designs,
different from privacy-preserving operations. Additionally,
we only require Data-Specific Indistinguishability (DSI)
between each pair (F(U),F(Ri)) for i = 1, 2, · · · ,m.

Operationally, since a given (possibly black-box) processing
functionF may not inherently satisfy all differential require-
ments, we consider introducing a (multivariate) Gaussian
noise e for required DSI such that for each pair (U,Ri),
i ∈ [1 : m], the noisy distributions F(U)+ e and F(Ri)+ e
are sufficiently close, as formalized below.
Definition 1.2 ((γ[1:m], ψ) Data-Specific Indistinguishabil-
ity (DSI) Gaussian Mechanism). Given a processing func-
tion F and an input U with m associated reference datasets
R[1:m](U) = {R(U)i, i ∈ [1 : m]} possibly determined
by U, for some divergence measure ψ, an (γ[1:m], ψ) DSI
Gaussian mechanism returns a zero-mean Gaussian distri-
butionN

(
0,Σ(U)

)
whose covariance Σ(U) can be selected

dependent on input U and references R[1:m](U) such that
for a noise e(U) independently sampled fromN

(
0,Σ(U)

)
,

ψ
(
PF(U)+e(U)∥PF(Ri)+e(U)

)
≤ γi, i = 1, · · · ,m, (2)

where Pa represents the distribution of a random variable a.

The data-dependent or data-specific aspect in Definition 1.2
is two-fold. First, the DSI in (2) only requires satisfactory
indistinguishability regarding specific output pairs produced
by our target input U and references R[1:m](U). Second,
both the references R[1:m](U) and the injected noise e(U)
can be adaptively selected dependent on the input U. In (2),
a smaller γi implies a stronger mitigation on the differential
effect between F(U) and F(Si) (their noisy versions are
statistically closer and harder to distinguish), which typi-
cally requires a larger noise variance along the direction
of difference F(U) − F(Ri). An application of backdoor
defense with DSI noise mechanism is illustrated in Fig. 1.

As a reasonable relaxation, DSI also systematically ad-
dresses the two above-mentioned challenges of applying
III to DT: i) by taking the target input U and its references
as parameters in the noise mechanism, we allow a user to
freely adjust the distinguishability levels γi across refer-
ences; ii) from utility standpoint, the optimal DSI noise is
independent of dimensionality and can be upper bounded by
the number m of references, which makes high-dimensional
trustworthy processing feasible, as elaborated in Section 3.

1.3. Contribution and Paper Organization

In this paper, we initiate the study on Differential Trust (DT)
through DSI-based defense with fourfold contributions from
concept, algorithm, theory and application perspectives.

1. DT and DSI Framework: We formalize DT as a
unified way to define a wide range of trust concepts
and propose the concept of DSI to support quantitative
studies and guarantees.

2. Optimal Gaussian Mechanism: We show, for ψ being
an arbitrary (non-decreasing function of) f -divergence,
determining the high-dimensional Gaussian noise with
minimal variance satisfying Definition 1.2 can be re-
duced to a convex optimization (Lemma 3.1) over m
non-negative Lagrangian multipliers (Theorem 3.3),
which is efficiently solvable (Algorithm 1). Of inde-
pendent interest, the proposed noise mechanism also
addresses the operational challenge in controlling per-
instance or individual privacy (Wang, 2019; Feldman
& Zrnic, 2021; Thudi et al., 2024) (Appendix A).

3. Properties of DSI: We comprehensively study
the properties of DSI guarantees, including post-
processing immunity, probabilistic interpretation, com-
position (Theorem 3.4) and grouping (Lemma 3.5), to
facilitate its application.

4. DSI Deep Learning: Stemmed from Differentially
Private Stochastic Gradient Descent (DP-SGD) (Abadi
et al., 2016), we propose a more general framework (Al-
gorithm 2) to iteratively incorporate optimal DSI noise
into a deep learning procedure with black-box optimiz-
ers. We show dimensionality-independent DSI noise
and the algorithmic flexibility, which allows local up-
dates without artificial clipping, significantly sharpen
the utility compromise (Table 1) especially when scal-
ing models. We show its applications in cutting-edge
applications for various trust concepts, including mem-
orization mitigation in large language models (LLM),
resistance to backdoor attacks, and copyright protec-
tion (Section 5).

2. Preliminaries
Divergence and Probability: One possible selection of the
measurement ψ in Definition 1.2 is f -divergence, as defined
below.
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Definition 2.1 (f -Divergence). Let f : (0,+∞) → R
be a convex function with f(1) = 0. Let P and Q be
two distributions on some measurable space, and the f -
divergence Df between P and Q is defined as

Df (P∥Q) := EQ

[
f(dP/dQ)

]
. (3)

Here, we use dP (dQ) to represent the probability density
(or mass) function of probability distribution P (Q).
Many commonly-used statistical divergence measurements
are special cases of f -divergence. In Definition 2.1, when
we select f(t) = t log(t), (3) becomes the Kullback-Leibler
(KL) divergence; when f(t) = |t− 1|/2, (3) becomes the
Total Variation (TV) DTV (P∥Q) = 1/2 ·

∫
|dP− dQ|.

f -divergence enjoys multiple desirable properties to facil-
itate both the interpretation and usage of DSI guarantees.
As detailed in Appendix B, DSI guarantees measured in f -
divergence is robust to post-processing (Lemma B.1). That
is to say, suppose we have found a proper noise e(U) such
that (2) holds for the noisy version of F(·), then the same
security parameters still hold for the output G(F(·) + e(·))
after applying a post-processing operator G. Other use-
ful properties including shift invarfiance (Definition B.2)
and joint convexity (Definition B.3), which will be used in
determining the optimal noise. Additionally, many other
divergences enjoying above-mentioned properties are essen-
tially a non-decreasing function of some f -divergence. One
representative is Rényi Divergence defined below.
Definition 2.2 (α Rényi Divergence). For α > 1, the α
Rényi Divergence Rα between two distributions P and Q
with identical support sets is defined as

Rα(P∥Q) := 1/α · log
(
EQ

[
(dP/dQ)α

])
.

Rα can be viewed as a logarithm of an f -divergence with
selecting f(t) = tα. Divergences are also useful to bound
the probability difference of some event in two distributions,
and we take Rényi Divergence as an example.
Lemma 2.3 (Probability Difference Bound (Langlois et al.,
2014)). For two distributions P and Q with identical support
sets and an arbitrary event A, the probability

P(A) ≤ Q(A)
α−1
α ·

(
Rα(P∥Q)

)1/α
. (4)

Additional Notations: For a positive semi-definite (PSD)
matrix C, suppose its singular value decomposition (SVD)
is in a form C = P ·Q ·PT , where P is a unitary matrix and
Q is a diagonal matrix; we will use (C)1/2 = P ·Q1/2 ·PT

to denote its factorization such that C = (C)1/2 · (C)1/2.
Tr(C) represents the trace of a matrix C (sum of diagonals).

3. DSI Gaussian Mechanism and Properties
In this section, we present the main algorithm to determine
the minimal DSI Gaussian noise and study the interpretation

and properties of DSI guarantees. We select ψ as an arbi-
trary f -divergence, while our following results also work for
ψ being some non-decreasing function of a f -divergence,
such as Rényi Divergence. Temporally, we assume a deter-
ministic processing function F : U∗ → Rd whose output is
a d-dimensional real vector; the generalization to a random-
ized function can be found in Appendix D. In the following,
we simplify the notations of the Gaussian noise, its covari-
ance and the m references by e, Σ and R[1:m], respectively,
which inherently can be dependent on the input U. We will
also useM(·) = F(·) + e to denote the noisy version of F .

Let zi = F(Ri)− F(U) be the output difference between
applying the processing function F(·) on U and Ri. For any
given f -divergence Df and a Gaussian noise e ∼ N (0,Σ),
the objective divergence in (2) can be expressed as

Df (PM(U)∥PM(Ri)) = Df

(
N (F(U),Σ)∥N (F(Ri),Σ)

)
= Df

(
N (0,Σ)∥N (zi,Σ)

)
.

Here, we utilize the shift-invariance property of f -
divergence (Lemma B.2). Thus, mathematically, determin-
ing the optimal d-dimensional Gaussian noise in terms of
minimal expected l2-norm square E[∥e∥22] can be framed as
the following optimization with constraints.

min
Σ

Ee∼N (0,Σ)[∥e∥22] = min
Σ

Tr(Σ) (5)

s.t. Df

(
N (0,Σ)∥N (zi,Σ)

)
≤ γi, i = 1, 2, · · · ,m. (6)

In (5), it is noted that the expected l2-norm squared of the
noise e corresponds to the trace of its covariance matrix Σ.
As for the constraints (6), we show the following results as
a universal simplification.

Lemma 3.1 (f -Divergence between Gaussians). For an
arbitrary f -divergence and two (multivariate) Gaussian dis-
tributions with identical covariance N (a,Σ) and N (b,Σ),
there exists some non-decreasing functionHf (·) such that

Df

(
N (a,Σ)∥N (b,Σ)

)
= Hf (∥a− b∥2Σ−1). (7)

Here, ∥t∥2Σ−1 = tΣ−1tT represents the Mahalanobis norm.

Lemma 3.1 implies that any f -divergence between two
Gaussians with identical covariance can be expressed as
some monotone function of the Mahalanobis norm with
respect to the difference of their mean. By Lemma 3.1,
let H−1

f be the inverse function of Hf and γ̃i = H−1
f (γi),

which is uniquely determined, (6) can be rewritten as

∥F(U)−F(Si)∥2Σ−1 = ∥zi∥2Σ−1 ≤ γ̃i, i ∈ [1 : m]. (8)

Now, to address (5) under the constraints (8), a straight-
forward approach might involve directly optimizing the d2

parameters of the noise covariance matrix Σ. However, this
approach faces at least two significant challenges:
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First, an implicit constraint in (5) requires that Σ, as a co-
variance matrix, must be positive semi-definite. Notably, the
set of all positive semi-definite matrices is convex but not
continuous, making the implementation of projection-based
optimization non-trivial. Second, in high-dimensional set-
tings—the primary focus of this paper—the dimensionality
d, which can reach billions in practical applications, is often
much larger than the number of references m. Optimiz-
ing d2 parameters under such conditions becomes compu-
tationally prohibitive. To overcome these challenges, we
reformulate the objective problem into an alternative form.

3.1. Algorithm for Optimal Gaussian Noise

Our proposed algorithm to determine the minimal noise
consists of two components: subspace embedding and La-
grangian multiplier gradient descent (GD), which is finally
reduced to optimize only m parameters.

Subspace Embedding: In the high-dimensional case when
m ≤ d, it is noted that we only need to calibrate the noise
e within the subspace spanned by z[1:m] to obfuscate each
difference zi rather than the entire output space Rd. More
importantly, this subspace is of rank up to m, and even in
the worst case when z[1:m] are all orthogonal to each other,
the required noise will only scale in a rate O(

√
min{m, d})

which fundamentally avoids the curse of dimensionality in
III mentioned earlier. Therefore, in the high-dimensional
case, we only need to determine the noise form in this
subspace and afterwards project it back to Rd.

In the following, we use Z ∈ Rm×d to represent the matrix
form of z[1:m], where each row corresponds to a zi, and we
assume the rank of Z is m̄ with m̄ ≤ m ≤ d.

Lemma 3.2 (Subspace Basis). Consider the SVD of Z ·ZT ,

Z · ZT = PZ ·QZ · PT
Z , (9)

where PZ is a unitary matrix whose columns correspond
to eigenvectors and QZ is diagonal of eigenvalues. Let
Q̄Z ∈ Rm̄×m̄ and P̄Z ∈ Rd×m̄ be the submatrix ofQZ and
PZ after excluding zero eigenvalues with its eigenvectors.
Then, the rows of Π = Q̄

−1/2
Z P̄T

Z · Z form an orthogonal
unit basis of the subspace spanned by the rows of Z .

Lemma 3.2 shows operationally how to find a basis Π of the
target subspace spanned by z[1:m]. It is noted that each row
of X = P̄Z ·Q̄1/2

Z now represents the expression of Z under
the selected basis Π. In addition, for any m̄-dimensional
Gaussian noise ē ∼ N (0, Σ̄) for Σ̄ ∈ Rm̄×m̄, Eē∥ē∥22 =
Eē∥ē·Π∥22, since Tr(Σ̄) = Tr((Π·ΠT )·Σ̄) = Tr(ΠT Σ̄·Π).
Therefore, the entire problem can be reduced to finding a
m̄× m̄ covariance matrix Σ̄ to

min
Σ̄

Tr(Σ̄), s.t. ∥xi∥2Σ̄−1 ≤ γ̃i, i = 1, 2, · · · ,m. (10)

Here, xi is the i-th row of X , the expression of zi under

Algorithm 1 Optimal DSI Gaussian Mechanism

Input: Output differences {z1, z2, · · · , zm} with its ma-
trix form Z by rows, error threshold κ, security parame-
ters γ̃[1:m], initialized λ = λ[1:m] and step size η.

1: if m ≤ d then
2: Determine subspace basis Π and the expression X of

Z under Π by Lemma 3.2. ▷ {subspace embedding}
3: else
4: Π = Id×d and X = Z .
5: end if
6: while true do
7: λ← max{λ− η · ∇L(λ),0} with gradient∇L(λ)

from (14). ▷ {GD with projection onto Rm
≥0}

8: Compute Σ̄(λ) =
(∑m

i=1 λi · xTi · xi
)1/2

.
9: if ∥∇Rm

≥0
L(λ)∥ ≤ κ for i = 1, 2, · · · ,m then

10: break
11: end if
12: end while
13: Sample ē ∼ N (0, Σ̄(λ)) and project it back to Rd as

e = ē ·Π.
Output: e ∈ Rd.

basis Π. With the optimum Σ̄∗ in (10), we can sample
ē ∼ N (0, Σ̄∗) ∈ Rm̄ and project it back to Rd by ē ·Π.

As a final remark, in the cases when m̄ > d, there is no
need to implement above-mentioned subspace embedding,
which is equivalent to Π = Id×d, the d× d identity matrix,
and X = Z , while all following analysis still works.

Lagrangian Multiplier GD: We consider the equivalent
mix-max dual problem of (10) with Lagrange multipliers
λ = λ[1:m], λi ≥ 0,

min
Σ̄

max
λ=λ[1:m]≥0

Tr(Σ̄) +

m∑
i=1

λi(∥xi∥2Σ̄−1 − γ̃i). (11)

It is not hard to verify that (11) is convex regarding Σ̄ while
linear (concave) with respect to λ, implying that the opti-
mum (Σ̄∗,λ∗) of (11) is unique. The following theorem
presents further insights that the optimum Σ̄∗ can be ex-
pressed by the Lagrange multipliers λ[1:m], and X and the
optimization over Σ̄ is thereby reduced to determining λ∗.
Theorem 3.3 (Optimal Covariance from Optimal Lagrange
Multipliers). Given a selection of λ = λ[1:m], define

Σ̄(λ) =
( m∑
i=1

λi · xTi · xi
)1/2

. (12)

The optimal solution Σ̄∗ to (10) is unique in a form Σ̄∗ =
Σ̄(λ∗) where λ∗ = argminλ≥0 L(λ) is the unique op-
timum of the function L(λ), defined below, under non-
negative constraints λ ≥ 0,

L(λ) = −
(
Tr(Σ̄(λ)) +

m∑
i=1

λi(∥xi∥2Σ̄(λ)−1 − γ̃i)
)
. (13)
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Moreover, the gradient of L(λ) in (13) has a closed form

∂L(λ)
∂λi

= −xiΣ̄(λ)−1xTi + γ̃i. (14)

From Theorem 3.3, the entire problem is reduced to a con-
vex optimization (13) over m parameters λ under a simple
non-negative constraints, which is solvable using standard
projected gradient descent (PGD). We summarize this op-
timal Gaussian mechanism as Algorithm 1 and we discuss
additional optimization trick in Appendix C.4.

3.2. Interpretation and Properties of DSI Guarantees

(i) One-Sided v.s. Two-Sided: Though our Gaussian
mechanism ensures a symmetric DSI guarantee, we need
to stress that this symmetry does not hold in general,
i.e., Df (PM(U)∥PM(Ri)) ̸= Df (PM(Ri)∥PM(U)). f -
divergence technically is not a symmetric metric between
two distributions. But one-sided DSI Df (PM(U)∥PM(Ri))
is usually sufficient to provide desired sematic interpreta-
tion. For example, recall the memorization or the backdoor
applications discussed in Introduction section:

Ri represents U excluding some target samples to mitigate
memorizing or data from malicious sources; if the reference
modelM(Ri) trained on Ri is of a high success rate to be ro-
bust against either memorization or backdoor attacks, then
the one-sided DSI Df (PM(U)∥PM(Ri)) can be translated
into an upper bound of the success rate forM(U), follow-
ing results such as Lemma 2.3. However, such an one-sided
measurement on the reference models in DSI is conceptu-
ally different from III guarantees, such as DP, where the
measurement must be symmetric; otherwise the asymmetry
itself could incur leakage.

(ii) Postprocessing Immunity: The processing inequality
(Lemma B.1) of f -divergence also straightforwardly implies
that DSI guarantees are robust to any post-processing. One
concrete example is that imagine the processing function
F is some deep learning algorithm and if the noisy model
weights satisfies (2), so do its the inference results produced.

(iii) Composition: There are many practical applications
where we may need to sequentially implement numerous,
possibly-adaptive processing functions, where the output
from the preceding function can be the input for the sub-
sequent one; and we need to keep track of the cumulative
divergence across multiple outputs generated. To be spe-
cific, imagine two processing functions F1 and F2; in the
context of DSI noise mechanism, our goal is to determine
two noises e1 and e2 such that for the joint mechanism M̃

M̃(U) =
(
F1(U) + e1,F2(U,F1(U) + e1) + e2

)
, (15)

the divergence Df

(
PM̄(U)∥PM̄(Ri)

)
≤ γi for each pair

(U,Ri), i ∈ [1 : m]. In such an adaptive setup, the input of
F2 includes both U and the noisy output from previously-

Algorithm 2 DSI Deep Learning Framework

Input: a (black-box) optimizer O(w,B) starting from
model weight w with data batch B, an input set U =
{u[1:n]} of n datapoints, m reference subsets Ri ⊂ U,
round number T , T batches of samples B(1), · · · ,B(T ),
B(t) ⊂ U for t ∈ [1 : T ], security budget ϵi for i ∈ [1 :
m], and initialization w(0).

1: With a composition accounting (Theorem 3.4), deter-
mine per-round security budget ϵ(t)i for t ∈ [1 : T ]
given a global budget ϵi for each i ∈ [1 : m] in (2).

2: for t = 1, 2, · · · , T do
3: Determine R

(t)
i = Ri ∩ B(t) for i ∈ [1 : m].

4: For each i ∈ [1 : m], compute the outcome difference

z
(t)
i = O(w(t−1),R

(t)
i )−O(w(t−1),B(t)). (16)

5: Apply Algorithm 1 on z(t)[1:m] with budgets ϵ̃(t)[1:m] to
determine the noise e(t).

6: Update weights w(t) = O(w(t−1),B(t)) + e(t).
7: end for

Output: w(T )

implemented F1, and it becomes complicated to even ana-
lyze the output distribution from M̄ due to infinite possible
instances of e1. Fortunately, we show an sequential imple-
mentation of Algorithm 1, iteratively conditional on the
noise sampled for preceding processing functions, is suffi-
cient to produce tight composite DSI bound.

Theorem 3.4 (Adaptive Composition under α-Divergence).
Let Dα be (non-normalized) α-divergence with f(t) = tα in
Definition 2.1. Suppose e1 is produced by Algorithm 1 onF1

such that Dα

(
PF1(U)+e1∥PF1(Ri)+e1

)
≤ γ(1)i for each pair

(U,Ri), i ∈ [1 : m], and conditional on e1, we implement
Algorithm 1 on F2(·,F1(·)+ e1) which returns e2 such that
Dα

(
PF2(U,F1(U)+e1)∥PF2(Ri,F1(Ri)+e1)

)
≤ γ

(2)
i , then for

the joint mechanism M̃ defined in (15),

Dα

(
PM̃(U)∥PM̃(Ri)

)
≤ γ(1)i · γ(2)i . (17)

The equality of (17) holds when the noises e1 and e2 are tight
to locally produce γ(1)i and γ(2)i for F1 and F2, respectively.

Theorem 3.4 shows that under α-divergence, the adaptive
composition can be simply expressed as a product of local
DSI parameters via (17), which can be easily generalized
to arbitrary T adaptive processing functions F[1:T ]. More
importantly by Theorem 3.4, operationally determining the
noises e[1:T ] only requires sequentially implementing the
adaptive processing functions F[1:T ] once, where each Fi is
conditional on earlier noisy outputs. The generalization to
other f -divergence can be found in Appendix C.5.

(iv) Group DSI: Inspired by group privacy (Dwork et al.,
2006b), a natural question is given DSI guarantees regarding

6
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each individual reference Ri, what can we say about the DSI
regarding an aggregation of a group {Ri}? The following
lemma upper bounds the group DSI.
Lemma 3.5 (Group DSI). For a Gaussian noise e ∼
N (0,Σ) such that ∥F(U)− F(Ri)∥2Σ−1 ≤ γ̃i, i ∈ [1 : m],
arbitrary non-negative weights w[1:m] ∈ Rm

≥0 such that∑m
i=1 wi = 1, and an subset Ω ⊂ [1 : m],

Df (PF(U)+e∥P∑
i∈Ω wiF(Si)+e) ≤ Hf (

∑
i∈Ω

w2
i ·

∑
i∈Ω

γ̃i).

Lemma 3.5 is helpful when our target data feature is in-
cluded in multiple reference set Ri. For example, if a piece
of information is distributed in multiple references Ri while
we only ensure DSI guarantees for each preselected pair
(U,Ri) during the training procedure, Lemma 3.5 can be
used to provide an aggregated upper bound of memorization
risk as discussed later in Section 5.

4. Deep Learning with DSI
In this section, we propose a gray-box framework of trust-
worthy deep learning with DSI. It is worth noting that all
presented techniques so far do not assume any specific as-
sumptions on the processing function F . Inspired by the
iterative perturbation with composition accounting in the
well-known DP-SGD (Abadi et al., 2016)3, we propose a
more general framework to support the application of black-
box optimizer with DSI noise for sharpened trustworthiness-
utility tradeoff as Algorithm 2.

In Algorithm 2, we consider a common setup where each
Ri is a subset of the input U, consisting of n samples. The
entire training procedure is divided into T rounds, each em-
ploying a black-box optimizer O. In the t-th round, a batch
B(t) is selected from U as the universe of samples for that
round. For each Ri, we apply O starting from the previ-
ous iterate w(t−1) on the intersection B(t) ∩ Ri. We then
compute the difference z(t)i between the updated weights
O(w(t−1),B(t) ∩ Ri) and O(w(t−1),B(t)), the latter being
the update from the full universe U. Using composition
(Theorem 3.4), we then apply the DSI noise mechanism (Al-
gorithm 1) to determine the per-round noise e(t) required to
obfuscate the target updated model weight O(w(t−1),B(t)).

When we select Ri to be a leaving-one subset of U after
excluding the i-th datapoint and O as an one-iteration, per-
sample-clipped gradient descent, Algorithm 2 reduces to
regular DP-SGD except we apply optimized DSI noise in-
stead of isotropic DP noise. Compared with DP-SGD, the
DSI framework has two major advantages:

1. Flexible Optimizer with Local Iterations Tricks: Un-
like DP-SGD, which requires a tractable per-round

3One can alternatively consider end-to-end DSI guarantee by
taking F as the entire training algorithm, but tight analysis can be
computationally expensive, as discussed in Appendix E.1.

sensitivity—typically enforced by per-sample gradi-
ent clipping which restricts neural network architec-
tures such as BatchNorm and incurs additional bias
(Xiao et al., 2023b)– Algorithm 2 imposes no such
constraints on the construction of O. As a concrete
example, we find that a more efficient choice for O is
a multi-iteration optimizer without clipping, such as
local SGD (Stich, 2018). This method not only accel-
erates convergence but also reduces the composition
budget for a smaller cumulative divergence.

2. Sharpened Noise: For a global (ϵ, δ) DP guarantee
over T iterations, DP-SGD is known to require a per-
round noise in l2-norm Õ(

√
dT/nϵ) for d model pa-

rameters; as a comparison, in DSI setup with Ri being
a leaving-one subset of U, the noise scale is improved
to Õ(

√
T/
√
nϵ), which is O(

√
d/n) smaller and inde-

pendent of dimensionality d. More details are deferred
to Appendix E.2.

To provide a clearer comparison with the classic (ϵ, δ) DP
parameters, all our following experiments adopt the same
measurement by transforming the γ security parameter mea-
sured in α-divergence (Theorem 3.4) into Rényi divergence,
which further upper bounds (ϵ, δ) parameters (Proposition
3 in (Mironov, 2017)). In Table 1, we compare the state-of-
the-art results of DP-SGD for the training of CIFAR10 in
ResNet-20 (0.3M parameters) and WideResNet-16 (2.6M
parameters) from scratch with those of Algorithm 2 by se-
lecting the optimizer O as 20 GD iterations in a small batch
size 400 without clipping. We observe that DSI local-SGD
outperforms DP-SGD in all cases, with more significant
advantages in larger models. Moreover, empirically, we
also observe that DSI local-SGD benefits from the properly
selected larger batch size. The DSI results in Table 1 can
be further improved through scaling with more computation
cost, similar to scaling DP-SGD (De et al., 2022).

5. Experiments
We further show the applications of DSI deep learning for
various trust concepts. We specify the experimental setup
in Section F. For all following experiments, DP-SGD re-
quires prohibitively-large noise or the provable ϵ by regular
isotropic DP noise can be hundreds of times larger than that
by DSI noise for the same empirical utility (Appendix F.4).
Thus, we omit the comparisons with DP-SGD below.

5.1. Memorization in LLM

We study the memorization when fine-tuning GPT2 (Rad-
ford et al., 2019) and Open Pre-trained Transformer (OPT)
(Zhang et al., 2022) using WikiText-5 dataset (Merity et al.,
2016). R[1:m] are selected as leaving-one subsets, targeting
mitigating memorization on each sample. Two types of
memorization are considered.

a) (v, c)-exposure (Carlini et al., 2019) We insert v copies
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Model Method
ϵ ∞ 1 2 3 4 5 6 7 8

ResNet-20
(Xiao et al., 2023b)

91.7
55.3 63.1 67.6 72.4 73.7 74.3 75.8 76.0

(Yu et al., 2021) / 59.7 / / 70.1 / / 74.9
DSI-Local-SGD 57.4 71.2 73.8 78.7 79.8 83.1 83.6 83.9

WideResNet-16
(De et al., 2022)

94.6
56.8 64.9 69.2 71.9 74.1 77.0 78.8 79.5

(Bao et al., 2023) 57.2 64.6 / 70.5 / / / 79.8
DSI-Local-SGD 63.7 76.1 80.5 82.4 84.4 86.6 86.8 87.1

Table 1. Test Accuracy (%) Comparison between standard distinguishability control through per-sample gradient clipping and isotropic
noise in DP-SGD (Xiao et al., 2023b; De et al., 2022) and the augmented versions with additional public data – (Yu et al., 2021)
projects per-sample gradients into a 2000-rank subspace estimated by public gradients and (Bao et al., 2023) conducts mixup between
every datapoint and public synthetic data – and DSI-Local-SGD with O being 20-local-GD-iteration with Ri as a leaving-one subset of
CIFAR-10 training data U from scratch without additional data across different ϵ selections with δ = 10−5.

Figure 2. (v, c) Exposure Rate when fine-tuning GPT2-small and OPT-350M using WikiText5 with/out DSI guarantees (ϵ, δ = 10−5).
.of a secret canary with 6 random digits in a form “the wiz-

ard’s secret code is 572869”, into the training data, and
consider the probability that the fine-tuned model can re-
cover at least c out of 6 digits when we prompt with the
prefix “the wizard’s secret code is” and enforce it to generate
6 digits proportional to the likelihood of digital tokens.

We first approximate the reference probability P0(v, c) of
(v, c)-exposure for a model trained on the original dataset
without secret canaries by a binomial distribution with pa-
rameter 0.1:

∑6
i=c

(
6
c

)
· 0.1c · 0.96−c, to guess 6 random

digits without prior knowledge. In Fig. 2, we show the expo-
sure rate with a varying duplication number v and different
LLMs when protected by different (ϵ, δ) DSI guarantees.
By Lemma 3.5 and (Dwork et al., 2014), given (ϵ, δ) DSI for
each leaving-one set Ri, (v, c)-exposure rate of our model
M(U) is bounded by evϵ · P0(v, c) + ve(v−1)δ. Compar-
ing with Fig. 2, the theoretical DSI guarantee shows as a
conservative bound of the exposure rate. For example in
GPT2-small, (ϵ = 2, δ = 10−5) ensures a provable upper
bound of (v = 1, c = 4) exposure by 10−2 while empir-
ically it is only 2 · 10−3. In Table 2, we further include
the perplexity over validation data as our utility metric, and
the exposure metric proposed in (Carlini et al., 2019) which
approximates the expected ratio (in logarithm log2) between
the likelihood of the fine-tuned model to generate the true 6
digits and that of a random selection of 6 digits.

b) (v, k, c)-exact-memorization (Tirumala et al., 2022):
We randomly select 2,000 samples from the training set and
duplicate each sample v times. In Table 4 (in Appendix F.2),
we report the exact memorization rate with/without DSI.
Specifically, we measure the percentage of cases where a

Duplication(v), model ϵ = ∞ ϵ = 2 ϵ = 4 ϵ = 6

1, GPT2-small (20.7, 2.2) (24.3, 0.8) (22.9, 0.6) (21.8, 1.5)
5, GPT2-small (20.5, 11.5) (24.2, 0.9) (23.0, 3.2) (22.0, 5.8)
10, GPT2-small (20.5, 16.0) (24.0, 2.4) (22.8, 3.8) (21.9, 8.9)
1, OPT-125M (20.1, 3.3) (24.7, 0.6) (22.6, 0.9) (21.9, 1.1)
5, OPT-125M (20.2, 11.2) (24.8, 1.1) (23.3, 2.8) (22.3, 2.9)
10, OPT-125M (20.2, 14.6) (24.5, 1.9) (23.0, 3.1) (22.0, 8.8)
1, OPT-350M (16.1, 0.6) (17.6, 0.3) (16.9, 0.4) (16.6, 0.5)
10, OPT-350M (16.1, 8.6) (17.6, 0.6) (16.8, 1.7) (16.5, 5.2)

Table 2.
(
Validation Perplexity, Exposure Metric (Carlini et al.,

2019)
)

when fine-tuning different LLMs using WikiText5 with
and without (ϵ = ∞) DSI guarantees in (ϵ, δ = 10−5).

Figure 3. Attack Success Rate and Test Accuracy (ACC) when
training poisoned CIFAR10 under Low-Frequency attacks (Zeng
et al., 2021) with/without DSI guarantees (ϵ, δ = 10−5).

.fine-tuned model, when prompted with the first k = 100
tokens of each of the 2,000 selected samples, can exactly re-
produce the next c = 5 tokens. We observe that larger mod-
els, requiring more iterations (more exposure to the training
data) before convergence, tend to memorize more informa-
tion. For example, under the same duplication setting of
v = 10, OPT-350M, which also exhibits lower perplexity,
achieves a 39.2% (10, 100, 5) exact memorization rate, com-
pared to 17.9% for OPT-125M, aligning with prior results
in (Tirumala et al., 2022). Similarly, provable DSI guaran-
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Original
Artwork

Before
Tuning

Regular Tuning
(ϵ = +∞)

ϵ = 1 ϵ = 2 ϵ = 4 ϵ = 6 ϵ = 8

Qi.

Xu.

Remb.

Table 3. Finetuing a Stable Diffusion (v1-4) on a collection of paintings from 10 artists with/without DSI under various ϵ and δ = 0.002.

tees provide conservative upper bounds. For instance, in the
case of GPT2-small, we evaluate the same exact memoriza-
tion on unseen test data, which averages 1.66% as our ref-
erence. Theoretical privacy bounds with (ϵ = 2, δ = 10−5)
upper limit the (1, 100, 5) exact memorization rate at 12.3%,
whereas the empirical rate is only 2.05%.

5.2. Data Poisoning (Backdoor) Attacks
We consider two benchmark backdoor attacks: Low-
Frequency (Zeng et al., 2021) and Blended (Chen et al.,
2017), both designed to mislead the model trained using
poisoned data into misclassifying samples containing spe-
cific triggers to a target class. We evaluate the DSI defense
on poisoned CIFAR-10 dataset in a setting with m data
sources, where one source is malicious (a corruption rate of
1/m). Specifically, we evenly partition the CIFAR-10 train-
ing dataset into m subsets, each assigned to one data source.
The (m− 1) sources retain clean data, while the malicious
source poisons its samples according to the chosen attack
strategy. In this DSI setup, U is the union of all samples
from the m sources, and each reference set Si is a subset of
U excluding samples from the i-th source.

For the processing function, we select F to be a distributed
SGD with a robust gradient aggregation, as detailed in Ap-
pendix F.3. For Low-Frequency attacks (Zeng et al., 2021),
in Fig. 3 we report both the Attack Success Rate (ASR)—the
proportion of poisoned samples classified into the target
class—and the test accuracy on clean data, with and without
DSI guarantees for training PreAct-ResNet18 (Wu et al.,
2022). The reported ASR corresponds to the model that
achieves the highest clean-data test accuracy across itera-
tions. Similar results are obtained for Blended attacks (Chen
et al., 2017) in Fig. 4 (see Appendix F.3). As expected, ASR
with DSI defense is significantly lower than that without
DSI guarantees, which drops as m increases (a smaller cor-
ruption rate 1/m). On the test accuracy side, a larger m

(larger Ri with more overlap) stabilizes the federated learn-
ing, leading to less DSI noise with better performance.

5.3. Copyright Protection/Contribution Control
We further explore the application of DSI for copyright pro-
tection by training a Stable Diffusion model on a dataset
U consisting of 425 paintings from 10 artists. Each refer-
ence set Ri is selected to be a subset of U excluding one
artist’s paintings, and the DSI parameter quantifies the per-
sample contribution to the resulting diffusion model. We
show both the original artworks and the generated images
under three conditions: before fine-tuning, after fine-tuning
without noise (ϵ =∞), and after fine-tuning using DSI for
three representative artists: Baishi Qi (Qi.), Beihong Xu
(Xu.), and Rembrandt van Rijn (Remb.). As expected, a
larger ϵ allows greater influence from the original artwork,
resulting in a more faithful style transfer. In practice, users
can choose ϵ for each artwork, which directly governs the
degree of influence, and use the influence as the basis for
compensation in data usage.

6. Conclusion
This paper establishes both the theoretical and algorithmic
foundations of DSI, offering a general solution to system-
atically ensure Differential Trust (DT) across a variety of
applications. While our initial results demonstrate a signifi-
cant improvement in the utility-trust trade-off compared to
traditional, such as DP-based, methods, the provable DSI
bounds remain conservative. A promising direction to re-
fine the DSI analysis is to incorporate amplification effects
from other sources of randomness, such as subsampling
(in this paper, we solely rely on randomness introduced
by noise injection). Furthermore, it would be intriguing
to generalize the notion of “influence” in DT and explore
other trustworthiness concepts, such as fairness, from a
contribution-oriented perspective.
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A. Related Works
A.1. Further Comparison between Differential Trust (DT), Differential Privacy (DP) and Individual/Instance-based

Differential Privacy

In this subsection, we provide a comprehensive comparison between Differential Trustworthiness (DT) and Differential
Privacy (DP), including its variants such as per-sample and individual DP, from three perspectives: motivational, conceptual,
and operational.

1. On Motivation, as mentioned earlier, both DP and DT leverage indistinguishability to establish probabilistic trust
guarantees. Distinguishability measures the closeness of two distributions, which can be interpreted in two ways:

a) It becomes harder to distinguish the source of a randomly drawn sample.

b) The behavior of two random variables, a ∼ A and b ∼ B, is similar in terms of probability: Pr(a ∈ O) ≈ Pr(b ∈ O)
for any set O.

Privacy (confidentiality protection) typically aims to a) prevent adversaries from recovering secrets from leakage. If the
leakages from different secrets are indistinguishable, no useful information is revealed to an adversary.

In contrast, DT aims to b) use divergence between a target and a set of references to characterize the probability that
an algorithm’s output satisfies certain trust properties. For a set of reference training datasets R1,R2, . . . ,Rm, if each
trained model F(Ri) has a 99% probability of not memorizing sensitive information qi, then the divergence between
F(U) and each F(Ri) provides a measure of the probability that F(U) does not memorize qi.

2. Conceptually, DT justifies the role of data dependence in trust-preserving mechanisms, whereas this remains a
challenge in privacy. If a specific sensitive data point x0 becomes a parameter in a privacy guarantee (e.g., achieving
(ϵ, δ)-DP for its membership), this itself leaks information about x0. Section 1.2 discusses why input independence is
essential for privacy and why most DP mechanisms need to rely on worst-case sensitivity.

A key insight from DT is that many trust-related concerns focus on the use (e.g. copyright) or influence (e.g. backdoor)
of public data to train a model, or governance (e.g. memorization) to prevent certain behaviors of trained models.
For DT applications that do not target information leakage, it suffices to construct indistinguishability with respect
to safe reference models. Unlike privacy-preserving operations, this construction does not necessarily require input
independence.

Another distinction is that DT only requires one-way divergence—specifically, the f -divergence between the target
output F(U) and reference outputs F(Ri). In contrast, DP treats two adjacent datasets X and X ′ symmetrically,
requiring controlling two-way divergence to prevent leakage. See Section 3.2(i) for further details. Moreover, the
reference set in DT can be arbitrary, not necessarily being leaving-one subsets to capture per-sample influence.

3. Operationally, we demonstrate how to determine the optimal anisotropic noise to achieve the required DSI guarantees
for black-box processing. However, black-box DP analysis remains open.

Additionally, since classic DP mechanisms calibrate noise based on the worst case, inlier (average-case) data points
may enjoy stronger privacy guarantees—motivating prior work on per-instance (Wang, 2019; Thudi et al., 2024) or
individual privacy (Feldman & Zrnic, 2021). However, formally quantifying this average-case amplification using
worst-case security parameters remains an open question: isotropic noise cannot provide controllable privacy loss for
every specific data point or exploit the average case. Existing works (Wang, 2019; Thudi et al., 2024; Feldman & Zrnic,
2021) can only estimate per-sample/individual privacy loss, while DSI noise shows a way to operationally control any
specific instance-based privacy risk.

As a summary, for certain trustworthy concepts related to the differential effect of a single datapoint, such as forgetting
individuals, DP has been recognized as providing sufficient (but stronger) guarantees (Golatkar et al., 2020a; Carlini et al.,
2021). As discussed earlier, the DSI framework can be viewed as a generalization of the III principle employed in DP,
allowing for modeling a broader range of trustworthiness through data-specific references while also achieving significantly
sharper trade-offs in utility.
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A.2. Unlearning

An unlearning procedure (Bourtoule et al., 2021) aims to remove the influence of a subset of the training data. Complete
unlearning through retrain from scratch is usually computationally expensive, and many approximate solutions are proposed,
among which a popular line is to clean the trained model weights based on estimated differential effect from target samples
to remove, for example Newton update based on Fisher Information Matrix (Golatkar et al., 2020b) or influence function
(Guo et al., 2020). Compared to DSI, existing approximate unlearning generally cannot quantify how much influence from
target samples is mitigated and it is also unclear about the application of unlearning in a scenario where we have “forgetting”
demands on every data point (Kurmanji et al., 2024).

A.3. Reference Set

It is also worth noting that the reference sets R[1:m] in DSI is conceptually related to the k-NAF copyright framework for
generative models (Vyas et al., 2023). The k-NAF framework divides the entire training dataset into multiple disjoint subsets,
ensuring that each copyrighted material appears in only one subset. A model is then trained on each subset as a reference,
and a sampling strategy is constructed to ensure that the likelihood of any generated output is close to that of each reference
model, say 2k multiplicatively-upper-bounded under maximal divergence. However, in k-NAF, the security parameter k is
not freely adjustable, and the proposed sampling method is largely restricted to generative models. In contrast, the DSI
framework is applicable to any black-box processing method and supports arbitrary levels of mitigation for each reference.

B. Properties of f -Divergence
Lemma B.1 (Data Processing Inequality (Sason & Verdú, 2016)). Consider a channel that produces Z given Y based on
the law described as a conditional distribution PZ|Y . If PZ is the distribution of Z when Y is generated by PY , and QZ is
the distribution of Z when Y is generated by QY , then for any f-divergence Df ,

Df (PZ∥QZ) ≤ Df (PY ∥QY ).

Lemma B.2 (Shift Invariance (Qiao & Minematsu, 2010)). For two random variables A and B whose distributions are
represented by PA and PB , respectively, for any differentiable and invertible transformation h and any f-divergence Df ,

Df

(
PA∥PB

)
= Df

(
Ph(A)∥Ph(B)

)
.

Lemma B.3 (Joint Convexity of f-Divergence (Sason & Verdú, 2016)). For any convex function f(z), z · f( zv ) is convex
with respect to (z, v). Accordingly, an f-divergence Df (P∥Q) is also jointly convex with respect to (P,Q).

C. Deferred Results of DSI Gaussian Mechanism
C.1. Proof of Lemma 3.1

With some calculation,

Df (N (µ1,Σ)∥N (µ2,Σ))

= c0 ·
∫
z

f
(
exp

(
− 1

2
· (∥z − µ1∥2Σ−1 − ∥z − µ2∥2Σ−1)

)
· exp(−1

2
· ∥z − µ2∥2Σ−1)

)
dz

= c0 ·
∫
z

f
(
exp

(
− 1

2
· (∥z − (µ1 − µ2)∥2Σ−1 − ∥z∥2Σ−1)

)
· exp(−1

2
· ∥z∥2Σ−1)

)
dz.

(18)

Here, c0 is the normalization constant of multivariate Gaussian density function. Decompose Σ−1 = QT · Λ2 ·Q, where
Q ·QT = Id and Λ is a diagonal matrix with positive diagonal elements. Then, by taking v = ΛQz and µ̄ = ΛQ(µ1 − µ2),
we have

Df (N (µ1,Σ)∥N (µ2,Σ)) = c0 ·
∫
v

f
(
exp

(
− 1

2
· (∥v − µ̄∥2 − ∥v∥2)

)
· exp(−1

2
· ∥v∥2)

)
dv. (19)
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Now, let A be the subspace of Rd of (d− 1)-rank orthogonal to µ̄ and we can rewrite an arbitrary v ∈ Rd as v = tµ̄+ v0
for some v0 ∈ A, where ∥v∥2 = t2∥µ̄∥2 + ∥v0∥2, then (19) can be further expanded as

Df (N (µ1,Σ)∥N (µ2,Σ))

= c0 ·
∫
t∈R

∫
v0

f
(
exp

(
(t− 1

2
) · ∥µ̄∥2

)
· exp

(
− t2

2
· ∥µ̄∥2

)
· exp

(
− 1

2
· ∥v0∥2

)
dv0∥µ̄∥dt

= c1 ·
∫
s∈R

f
(
exp

(
∥µ̄∥(s− 1

2
· ∥µ̄∥)

))
· exp(−1

2
s2)ds.

(20)

Here, s = ∥µ̄∥t. The remaining proof is straightforward.

Next, we want to show (20) is monotonically increasing in ∥µ̄∥. Denote ∥µ̄∥ by θ and Df (N (µ1,Σ)∥N (µ2,Σ)) by H̄f (θ),
then it suffices to show dH̄f (θ)

dθ ≥ 0 whenever θ ≥ 0.

dH̄f (θ)

dθ
= c1

∫
s∈R

f ′
(
exp

(
θs− 1

2
θ2
))
· exp

(
θs− 1

2
θ2
)
· (s− θ) · exp(−1

2
s2)ds

= c1

∫
s∈R

f ′
(
exp

(
θs− 1

2
θ2
))
· (s− θ) exp

(
− 1

2
(s− θ)2

)
ds

x:=s−θ
====== c1

∫
x∈R

f ′
(
exp

(
θx+

1

2
θ2
))
· x exp

(
− 1

2
x2

)
dx

denote f ′(exp(θx+ 1
2 θ

2)) by Φ(x)
===================== c1

∫ ∞

0

(
Φ(x)− Φ(−x)

)
· x exp

(
− 1

2
x2

)
dx ≥ 0.

(21)

Since f is convex, f ′ is monotonically increasing. We conclude that Φ(x) = f ′
(
exp

(
θx + 1

2θ
2
))

is monotonically
increasing in x given θ ≥ 0. Then the result is apparent as the integrand is non-negative.

C.2. Proof of Lemma 3.2

For the given Π = Q̄
−1/2
Z P̄T

Z · Z ∈ Rm̄×d, it is noted that

Π ·ΠT = Q̄
−1/2
Z P̄T

Z · (Z · ZT ) · P̄ZQ̄
−1/2
Z = Q̄

−1/2
Z P̄T

Z · (PZQZP
T
Z ) · P̄ZQ̄

−1/2
Z = Im̄×m̄. (22)

(22) suggests that each row of Π is of l2-norm 1 and orthogonal to each other. On the other hand, by the definition, the rows
of Π are within the subspace spanned by the rows of Z , and thus, as claimed, the rows of Π form a orthogonal unit basis.

C.3. Proof of Theorem 3.3

Recall (11). Since the inverse map Σ 7→ Σ−1 is operator convex on the cone of positive-definite matrices, applying x(·)xT
to both sides preserves the inequality, yielding ∥x∥2Σ−1 is convex in Σ ≻ 0. It is clear that Tr(Σ) is convex in Σ ≻ 0, thus
(11) is convex regarding Σ where Σ ≻ 0 and concave (linear) with respect to λ. Therefore, by Sion’s Minimax Theorem,

(Σ∗,λ∗) = argmin
Σ̄≻0

max
λ=λ[1:m]≥0

Tr(Σ̄) +

m∑
i=1

λi(∥xi∥2Σ̄−1 − γ̃i)

= arg max
λ=λ[1:m]≥0

min
Σ̄≻0

= Tr(Σ̄) +

m∑
i=1

λi(∥xi∥2Σ̄−1 − γ̃i)
(23)

for a fixed λ, and
∂
(
Tr(Σ̄) +

∑m
i=1 λi(∥xi∥2Σ̄−1 − γ̃i)

)
∂Σ̄

= I +

m∑
i=1

λi(−Σ̄−1xTi xiΣ̄
−1)

= I − Σ̄−1
( m∑
i=1

λix
T
i xi

)
Σ̄−1.

(24)

Setting (24) equaling 0 yields (12). It is clear that (12) is positive definite for any λ ≻ 0 satisfying ∥λ∥0 ≥ dimxi,
confirming the optimality of (12) in Sdim xi

++ .

15



Trustworthy Machine Learning through Data-Specific Indistinguishability

We then present the derivation of the closed-form gradient of L(λ) in (13). Notice that by (12),

Σ̄(λ) = Σ̄(λ)2Σ̄(λ)−1 =
( m∑
i=1

λix
T
i xi

)
Σ̄(λ)−1 =

m∑
i=1

λix
T
i xiΣ̄(λ)

−1 (25)

Therefore,

Tr
(
Σ̄(λ)

)
=

m∑
i=1

λi Tr
(
xTi xiΣ̄(λ)

−1
)
=

m∑
i=1

λixiΣ̄(λ)
−1xTi =

m∑
i=1

λi∥xi∥2Σ̄(λ);

L(λ) = −2Tr
(
Σ̄(λ)

)
+

m∑
i=1

λiγ̃i.

(26)

Finally, for the gradient computation, let A =
∑n

i=1 λix
T
i xi and by the chain rule

∂ Tr(Σ̄(λ))

∂λi
=

〈∂ Tr(Σ̄(λ))
∂A

,
∂A

∂λi

〉
F
=

(1
2
·A− 1

2

)
·
(
xTi · xi

)
=

1

2
·
∑
j,l

Σ̄−1(λ)(j, l) · xi(k) · xi(l) =
1

2
· xiΣ̄−1(λ)xTi .

(27)

Then (14) follows immediately from (26) and (27).

C.4. Enhanced Optimization Techniques for Algorithm 1

The projection onto the non-negative orthant introduces non-smoothness at the boundary, which may slow down the
convergence in practice. To effectively handle the non-negativity constraint on λ and improve convergence efficiency near
the boundary, we perform gradient updates in the logarithmic domain. Specifically, we update λ as:

λ := exp(log(λ)− η∇L(λ)).

This formulation aligns with Mirror Descent using a log-barrier function, naturally leading to a multiplicative update that
ensures strict positivity of λ throughout optimization.

To further enhance convergence speed, we incorporate an adaptive backtracking line search strategy for step size η, combined
with periodic resetting:

• Initialization: Set the initial step size as η := η0.

• Backtracking Line Search: At each iteration k, compute the candidate update:

λnew
k = exp (logλk − η∇L(λk)) .

If the function value does not decrease, i.e.,
L(λnew

k ) > L(λk),

we iteratively reduce η using a decay factor α ∈ (0, 1):

η ← αη.

This process continues until a sufficient decrease is achieved:

L(λnew
k ) ≤ L(λk).

• Periodic Step Size Resetting: To prevent the step size from becoming excessively small and stalling progress, we
periodically reset it to η0 every K0 iterations:

η ← η0, if k mod K0 = 0.

This adaptive search mechanism enables the algorithm to take advantage of large step sizes whenever possible while
preventing stagnation due to overly conservative updates. In our implementation, we set η0 = 10, α = 0.1, and K0 = 20.
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C.5. Composition

C.5.1. PROOF OF THEOREM 3.4 AND GENERALIZATION

For notation simplicity, we useM1 = F1(·) + e1 andM2 = F2(·,F1(·) + e1) + e2 to denote the noisy mechanism of F1

and F2, respectively. The α-divergence Dα

(
PM̃(U)∥PM̃(Ri)

)
, can be expanded and rewritten as

Dα

(
PM̃(U)∥PM̃(Ri)

)
=

∫
o(1),o(2)

Pr
(
M̄(U) = (o(1), o(2))

)α
Pr

(
M̄(Ri) = (o(1), o(2))

)α−1

=

∫
o(1),o(2)

(
Pr

(
M1(U) = o(1)

)
· Pr

(
M2(U, o

(1)) = o(2)
))α(

Pr
(
M1(Ri) = o(1)

)
· Pr

(
M2(Ri, o(1)) = o(2)

))α−1

=

∫
o(1)

Pr
(
M1(U) = o(1)

)α
Pr

(
M1(Ri) = o(1)

)α−1 ·
∫
o(2)

Pr
(
M2(U, o

(1)) = o(2)
)α

Pr
(
M2(Ri, o(1)) = o(2)

)α−1

=

∫
o(1)

Pr
(
M1(U) = o(1)

)α
Pr

(
M1(Ri) = o(1)

)α−1 · Dα

(
PM̃2(U,o(1))

∥PM̃2(Ri,o(1))

)
·

(28)

By the assumption of the iterative implementation of the noise mechanism Algorithm 1, which always ensures that
conditional on any outcome o(1) fromM1, Dα

(
PM̃2(U,o(1))

∥PM̃2(Ri,o(1))

)
≤ γ(2), (28) is further bounded by

Dα

(
PM̃(U)∥PM̃(Ri)

)
≤

∫
o(1)

Pr
(
M1(U) = o(1)

)α
Pr

(
M1(Ri) = o(1)

)α−1 · γ
(2) ≤ Dα

(
PM1(U)∥PM1(Ri)

)
· γ(2) ≤ γ(1) · γ(2), (29)

which completes the proof. It is worthwhile noting that the equality in (29) holds when the noise e1 and e2 tightly produce the
required security parameters γ(1) and γ(2), i.e., Dα

(
PM1(U)∥PM1(Ri)

)
= γ(1) and Dα

(
PM2(U,o(1))∥PM2(Ri,o(1))

)
= γ(2),

i.e., the per-round noise computed is optimal.

With a similar reasoning, by selecting Df to be KL divergence, we have the following corollary.
Corollary C.1 (Adaptive DSI Composition under KL-Divergence). With the same setup, by replacing the α-divergence Dα

in Theorem 3.4 with KL divergence DKL,

DKL

(
PM̄(U)∥PM̄(Ri)

)
≤ γ(1)i + γ

(2)
i . (30)

Proof.

DKL

(
PM̃(U)∥PM̃(Ri)

)
=

∫
o(1),o(2)

Pr
(
M̄(U) = (o(1), o(2))

)
· log

( Pr (M̄(U) = (o(1), o(2))
)

Pr
(
M̄(Ri) = (o(1), o(2))

))
=

∫
o(1),o(2)

Pr
(
M1(U) = o(1) · Pr

(
M2(U, o

(1)) = o(2)
))
· log

( Pr
(
M1(U) = o(1)

)
· Pr

(
M2(U, o

(1)) = o(2)
)

Pr
(
M1(Ri) = o(1)

)
· Pr

(
M2(Ri, o(1)) = o(2)

))
=

∫
o(1),o(2)

Pr
(
M1(U) = o(1)

)
Pr

(
M2(U, o

(1)) = o(2)
)
·
(
log

( Pr (M1(U) = o(1)
)

Pr
(
M1(Ri) = o(1)

))+ log
( Pr (M2(U, o

(1)) = o(2)
)

Pr
(
M2(Ri, o(1)) = o(2)

)))
= DKL

(
PM1(U)∥PM1(Ri)

)
+

∫
o(1)
DKL

(
PM2(U,o(1))∥PM2(Ri,o(1))

)
≤ γ(1) + γ(2).

(31)
Similarly, when e1 and e2 are tightly to produce the per-round DSI guarantees, i.e., DKL

(
PM1(U)∥PM1(Ri)

)
= γ(1) and

DKL

(
PM2(U,o(1))∥PM2(Ri,o(1))

)
= γ(2), then the equality holds in (31).

C.5.2. COMPARISON BETWEEN DSI AND III COMPOSITION

The composition of III guarantees has been extensively studied, particularly in the context of differential privacy (DP)
(Kairouz et al., 2015; Mironov, 2017; Dong et al., 2022; Zhu et al., 2022). The primary goal of composition analysis, whether
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in the context of Data-Specific Indistinguishability (DSI) or III, is to upper bound the divergence of the joint distribution
given the divergence of individual components. However, most existing III results focus on the composition of the worst-case
scenario for each component. This is often formalized as follows: given mechanismsM1(·),M2(·), . . . ,MT (·), each
satisfying (ϵ0, δ0)-DP, the joint mechanismMT ◦ · · · ◦M2 ◦M1(·) satisfies Õ(

√
Tϵ0, T δ0)-DP, as stated in the advanced

composition theorem for DP (Kairouz et al., 2015).

In practical applications, such as DP-SGD, where each componentMi corresponds to the noisy, clipped per-sample gradient
aggregation in a single iteration, the security parameter (ϵ0, δ0) is determined only by the clipping threshold and noise
scale. These parameters reflect the worst-case divergence between two adjacent datasets. Consequently, this worst-case
composition often fails to tightly characterize the composite divergence for specific outputs generated from particular input
pairs, since the worst-case scenario is assumed to happen in every iteration, making these bounds overly conservative.

In contrast, the composition of DSI noise mechanisms captures the average-case behavior. Here, the noise is adaptively
aligned with each instance during the composition process. As demonstrated, when the noise is tightly calibrated to produce
the per-round DSI guarantees for each individual instance, the resulting composition bound is also tight for the overall
randomized joint mechanism.

C.6. Proof of Lemma 3.5

Based on Lemma 3.1, given e ∼ N (0,Σ) such that ∥zi∥2Σ−1 = γ̃i for i = 1, 2, · · · ,m,

Df (PF(U)+e∥P∑
i∈Ω wiF(Si)+e) = Hf

(
∥
∑
i∈Ω

wi(F(Si)−F(U))∥2Σ−1

)
= Hf

(
∥
∑
i∈Ω

wizi∥2Σ−1

)
(32)

On the other hand, by Cauchy–Schwarz inequality, with |Ω| representing the number of elements in Ω.

∥
∑
i∈Ω

wizi∥2Σ−1 ≤ min{(
∑
i∈Ω

w2
i )(

∑
i∈Ω

γ̃i), |Ω|
∑
i∈Ω

w2
i γ̃i}. (33)

Thus, combined with the monotone property ofHf , the claim follows.

D. Generalization to Randomized Processing Function
In Section 3, we mainly focused on the deterministic processing function F and the entire randomization is from the added
Gaussian noise. Our theory can be easily generalized to the randomized F(·, θ) with inherent randomness captured by a
random seed θ, where θ ∼ DΘ. The key idea here is to take the Gaussian noise e(θ) also dependent on the random seed
θ. Suppose for each θ, we determine an e(θ) ∼ N

(
0,Σ(θ)

)
such that for each difference zi(θ) = F(Ri, θ) − F(U, θ),

Df

(
N (0,Σ(θ))∥N (zi(θ),Σ(θ))

)
≤ γi, then provided the joint convexity of f-divergence (Lemma B.3),

Df (PM(U)∥PM(Ri)) = Df

(∑
θ

P(θ)N (F(U, θ),Σ(θ))∥
∑
θ

P(θ)N (F(Ri, θ),Σ(θ))
)

≤
∑
θ

P(θ)Df

(
N (0,Σ(θ))∥N (zi(θ),Σ(θ))

)
≤ γi.

(34)

(34) has important operational implication on ensuring DSI for randomized processing procedure. With a similar implemen-
tation principle in determining noise in compositional DSI (Theorem 3.4) where there is no need to simulate all possibilities
but only focus on the particular sequence of produced instances, for a randomized processing function F , it suffices to 1)
randomly sample θ only once, 2) apply algorithm in Section 3.1 to determine the Gaussian distribution N

(
0,Σ(θ)

)
for the

particular difference zi(θ), and 3) sample noise e(θ) ∼ N
(
0,Σ(θ)

)
and output F(U, θ) + e(θ).

E. DSI Deep Learning
E.1. Why not End-to-End DSI for Deep Learning

Another natural question in the construction of the DSI deep learning framework is that, provided the capacity of DSI to
handle black-box processing function, can we simply take F as the entire deep learning algorithm and simply do end-to-end
analysis by only adding noise to the last iterate. Unfortunately, at least from computational efficiency standpoint, it remains
challenging to tightly determine the optimal or usable noise parameters in such an end-to-end setup.
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We implement the following experiment to compare ResNet20 models trained by standard SGD on adjacent CIFAR10
dataset. Here, we craft a pair of adjacent datasets Ū and Ū

′
by considering the original full CIFAR10 set and its subset

after excluding the first data point. We first select 100 random seeds, fix them, and train 100 models 4 from each
of Ū and Ū

′
based on the selected 100 seeds with the same initialized weight, denoted by {w1, w2, · · · , w100} and

{w′

1, w
′

2, · · · , w
′

100}, respectively. We record the average of the l2-norm of the model weights, where
∑100

i=1 ∥wi∥2/100 =

28.4 and
∑100

i=1 ∥w
′

i∥2/100 = 28.2; on the other hand, we compute their minimal difference mini,j ∥wi − w
′

j∥2 = 10.1.
That is to say, across 100 trials, we fail to find a single case where SGD on Ū and Ū′ converge to two close local minimum.
As a consequence, if we restrict the randomness of SGD among the 100 selected seeds, the required noise on last-iterate
output can be much larger than the model itself and fully destroy the utility.

The above experiments suggest two facts: even if we only drop a single datapoint, a) SGD in deep learning is not
deterministically robust with fixed random seed; b) its distributional robustness or stability with random seeds cannot
be computationally verified or exploited. In particular for b), our observation where models trained across 100 trials all
converge to very different local minima is not surprising. It is known that the number of local minima actually grows
exponentially with the dimension in neural network (Auer et al., 1995). Thus, we can anticipate with limited simulation
budget, end-to-end DSI nosie mechanism on SGD cannot provide meaningful utility-trustworthiness tradeoff.

Therefore, in the proposed DSI deep learning framework, we still adopt an iterative perturbation method through composition,
with efficiency consideration.

E.2. Isotropic DP Noise and Anisotropic DSI Noise Bounds

Assisted with sampling amplification, under a T -iteration budget where each datapoint in an n-element dataset is selected
with probability q in each batch, when the sampling rate q is sufficiently large, specifically ω(

√
ϵ/T ), DP-SGD requires

per-iteration noise with an expected l2-norm of O
(√dT log(1/δ)

n

)
to ensure a global (ϵ, δ) DP guarantee (Abadi et al., 2016).

In practical scenarios, DP-SGD typically achieves best performance when a large, constant subsampling rate q is used (De
et al., 2022), as smaller subsampling rates may fail to fully exploit linear amplification effects (Zhu & Wang, 2019).

In the presented DSI analysis, we do not account for amplification arising from the randomness of subsampling in the
iterative deep learning algorithm. Strictly speaking, this makes our noise bound conservative. However, this simplification
also grants us the flexibility to freely design our mini-batch selection strategy. For instance, consider a standard partitioning
approach where the dataset of n samples is divided into 1/q batches, each containing nq samples. In this setup, each
datapoint appears in Tq of the total T iterations, requiring only a Tq-composition analysis.

For each iteration, the l2-norm of the required per-iteration noise is scaled at most by
√
nq, even in the worst-case scenario

where the differences among the nq leave-one-out subsets (corresponding to the nq selected samples) are orthogonal to each
other. Combining these considerations, the expected l2-norm of the per-iteration noise required for a global (ϵ, δ) guarantee
under the DSI noise framework, with a Tq composition, is given by:

O

(
1

nq
· √nq ·

√
Tq log(1/δ)

ϵ

)
= O

(√
T log(1/δ)√

nϵ

)
. (35)

It is worth noting that the bound in (35) is independent of the batch size.

F. Experiments
F.1. Comparison with DP-SGD

In Table 1, we implement DSI local SGD as follows: for each epoch, the CIFAR-10 training set of 50,000 samples, as our
input set U, is partitioned into 125 batches, each containing 400 samples. In the t-th round, we further divide each batch
into L = 20 subgroups, G(t)

1 , G
(t)
2 , . . . , G

(t)
20 , each consisting of 20 samples. We then perform K = 20 local full gradient

descent steps using optimizer O, initialized from the preceding iterate w(t−1), on each subgroup G(t)
l . The final output of

this round is obtained by averaging the updated weights from all L = 20 subgroups as:

4We apply a batch size of 128 and run SGD for 200 epochs.
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Duplication(v), model unseen data ϵ = ∞ ϵ = 2 ϵ = 4 ϵ = 6

1, GPT2-small 1.66 3.15 2.05 2.25 2.55
10, GPT2-small 1.66 9.80 2.60 4.20 5.60
1, OPT-125M 2.05 2.90 1.70 1.55 2.35
10, OPT-125M 2.05 17.9 3.20 7.60 8.50
1, OPT-350M 1.23 3.85 2.15 2.25 2.65
10, OPT-350M 1.23 39.2 3.90 4.50 9.50

Table 4. (v, 100, 5) Exact Memorization Rate (%) when finetuning different LLMs using WikiText5 with and without (ϵ = ∞) DSI
guarantees in (ϵ, δ = 10−5).

w(t) =
1

20

20∑
l=1

O(w(t−1), G
(t)
l ). (36)

For a reference subset Ri, note that in each round, the computation over Ri differs from that over U in at most one local
gradient descent step—specifically, in the subgroup containing the differing datapoint U \ Ri. Thus, to compute the noise in
each iteration, it suffices to determine zj for j = 1, 2, . . . , 200, where zj corresponds to the outcome difference:

zj =
1

20

(
O(w(t−1), G

(t)
i )−O(w(t−1), G

(t)
i \ uj)

)
, (37)

for each uj included in subgroup G(t)
i .

This subgrouping strategy is primarily motivated by implementation efficiency. Under this setup, determining the noise per
round requires only 201 executions of 20 local gradient descent steps over 10 samples, compared to 201 executions over 200
samples, significantly reducing computational overhead.

As for the hyperparameter selection, for ϵ = 1, ϵ = 2, ϵ ∈ [3 : 4], and ϵ ∈ [5 : 8], we select the epoch number to be 3, 6, 10
and 15, respectively. We uniformly select the learning rate of the local SGD to be 1.25 · 10−4.

F.2. Memorization

We construct the WikiText-5 dataset by taking the first 5/103 portion of text examples from WikiText-103 (Merity et al.,
2016), resulting in a training set of approximately 5.7 million tokens. The samples are then reformatted into 5,640 sequences,
each of length 1,024, with each sequence treated as an individual sample.

For different models, we determine the optimal number of training epochs based on validation perplexity, selecting the
highest-performing epoch before overfitting occurs given the chosen learning rate. Specifically:

- For GPT-2 small, we use a learning rate of 3× 10−4 and train for 1 epoch.

- For OPT-125M, we use a learning rate of 1.5× 10−4 and train for 1 epoch.

- For OPT-350M, we use a learning rate of 1× 10−5 and train for 5 epochs.

For all DSI-related results presented in Fig. 2 and Tables 2 and 4, we employ standard Adam (Kingma, 2014), with a batch
size of 20 without local iterations, as our optimizer O within the proposed DSI deep learning framework.

F.3. Backdoor Attacks

We consider the following setup: for m sources/entities where one of them is malicious, we evenly split the CIFAR10
training dataset, totally 50,000 samples, into m disjoint subsets, each with 50000/m samples; for the objective poisoning
strategy, the malicious entity will transform their assigned samples accordingly, while all other (m − 1) users hold the
original clean samples assigned. The PreAct-ResNet18 is pre-trained using CIFAR100 data.

The federate learning algorithm F is defined as follows. The entire training procedure consists of T phases, and each phase,
captured by O in Algorithm 2, is formed by K local iterations. In each iteration, the central server asks each participated
entity to subsample 2000/m many samples from their local data and accordingly compute and send the gradient computed
on current iterate. The server then robustly aggregate the received gradients in three steps:

1. Clipping: Suppose the server receives n gradients g1, g2, · · · , gn from each participated entity. They first determine
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Figure 4. Attack Success Rate and Test Accuracy (ACC) when training poisoned CIFAR10 under Blended attacks (Chen et al., 2017)
with/without DSI guarantees (ϵ, δ = 10−5).

.the medium of the l2-norm of the n entity-level gradient, denoted by s̄. Then, each gradient gi is clipped to g′i ←
gi ·min{1, ∥gi∥s̄ }.

2. Cosine-Similarity Projection: For clipped gradients g′[1:n], the server computes their mean, denoted by ḡ = 1/n ·∑n
i=1 g

′
i and determine the angle θi between gi and ḡ, where cos(θi) =

⟨g′
i,ḡ⟩

∥gi∥∥ḡ∥ . Similarly, we compute the medium of
θ[1:n], denoted by θ̄. We then further project each clipped g′[1:n] to a cone such that its projected version will not be
more than θ̄ cosine-away from ḡ. To be formal,

g′′i = argmin
g
∥g − g′i∥, s.t. ∥g∥ = ∥g′i∥, arccos(

⟨g′i, g⟩
∥gi∥∥ḡ∥

) ≥ θ̄. (38)

.

3. Aggregation and Update: Finally, the server takes the average of g′′[1:m] as the update and move forwards to the next
iteration.

The above-described operations ensure that the gradient collected from each entity cannot be arbitrarily large or pointing out
to some direction dramatically different from the majority. This simple robust aggregation is helpful in applying DSI noise
to avoid the trivial attack where the adversary may just send large outliers to enforce adding a huge noise to destroy the
utility.

In particular, for the hyper-parameter selection in our experiments shown in Fig. 3 and 4 we select T = 50 and K = 10
with a step size (learning rate) 10−3. As mentioned before, each reference set Si is selected to be the entire training data U
excluding the samples from i-th entity. Thus, for each phase, to determine the outcome difference zi, we will implement O
across U and S[1:m], with a computation overhead O(m2). 5

F.4. Comparison between DSI Noise and Isotropic Noise in Defending Backdoor Attacks

In this subsection, we further include the comparison of the empirical efficiency between classic isotropic noise and the
optimized anisotropic noise in defending backdoor attacks.

Matching Utility Performance: We first adjust the variance of isotropic noise to match the test accuracy obtained with the
DSI framework under ϵ = 4 and ϵ = 8 with δ fixed to be 10−5. We then compare adversarial success rate (ASR), showing
that for the same empirical utility, DSI noise on average has a better efficiency compared to isotropic noise in defending
against backdoor attacks, as shown in Table 5, 6.

Evaluating Provable Indistinguishability: We also report the provable (ϵ, δ) guarantees achievable by isotropic noise in
this setup. As expected, when the number of sources m is small, worst-case sensitivity remains high. Even with m = 80,
for blended attacks, the resulting bound (ϵ = 179, δ = 10−5) is too weak to provide meaningful guarantees, to match the
same performance from DSI framework with (ϵ = 4, δ = 10−5).

5When we implement O on each Si, each local iteration only takes the gradient collected from (m − 1) entities; while when we
implement O on U, each local iteration takes the gradient collected from all m entities.
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Table 5. Comparison on indistinguishability control and defense efficiency in Adversarial Success Rate (ASR) against Low-Frequency
Attacks (Zeng et al., 2021) between DSI Noise and Isotropic Noise with fixed test accuracy on clean data.

(a). m = 10 Sources

Test ACC (%) Ind. Guarantee ASR (%)

75.6 (ϵ = 8, δ = 10−5) (DSI) 13.9
(ϵ = 2019, δ = 10−5) (Iso.) 25.6

65.5 (ϵ = 4, δ = 10−5) (DSI) 2.0
(ϵ = 575, δ = 10−5) (Iso.) 20.2

(b). m = 20 Sources

Test ACC (%) Ind. Guarantee ASR (%)

79.1 (ϵ = 8, δ = 10−5) (DSI) 8.4
(ϵ = 1661, δ = 10−5) (Iso.) 16.2

70.9 (ϵ = 4, δ = 10−5) (DSI) 5.3
(ϵ = 479, δ = 10−5) (Iso.) 11.5

(c). m = 40 Sources

Test ACC (%) Ind. Guarantee ASR (%)

78.4 (ϵ = 8, δ = 10−5) (DSI) 6.4
(ϵ = 627, δ = 10−5) (Iso.) 7.3

73.6 (ϵ = 4, δ = 10−5) (DSI) 6.6
(ϵ = 312, δ = 10−5) (Iso.) 7.2

(d). m = 80 Sources

Test ACC (%) Ind. Guarantee ASR (%)

79.5 (ϵ = 8, δ = 10−5) (DSI) 8.9
(ϵ = 350, δ = 10−5) (Iso.) 8.2

74.1 (ϵ = 4, δ = 10−5) (DSI) 6.1
(ϵ = 114, δ = 10−5) (Iso.) 7.7

Table 6. Comparison on indistinguishability control and defense efficiency in Adversarial Success Rate (ASR) against Blended Attacks
(Chen et al., 2017) between DSI Noise and Isotropic Noise with fixed test accuracy on clean data.

(a). m = 10 Sources

Test ACC (%) Ind. Guarantee ASR (%)

73.9 (ϵ = 8, δ = 10−5) (DSI) 15.7
(ϵ = 2019, δ = 10−5) (Iso.) 9.9

57.5 (ϵ = 4, δ = 10−5) (DSI) 0.1
(ϵ = 350, δ = 10−5) (Iso.) 9.8

(b). m = 20 Sources

Test ACC (%) Ind. Guarantee ASR (%)

77.9 (ϵ = 8, δ = 10−5) (DSI) 7.7
(ϵ = 1661, δ = 10−5) (Iso.) 8.8

67.1 (ϵ = 4, δ = 10−5) (DSI) 1.1
(ϵ = 241, δ = 10−5) (Iso.) 2.4

(c). m = 40 Sources

Test ACC (%) Ind. Guarantee ASR (%)

78.8 (ϵ = 8, δ = 10−5) (DSI) 7.1
(ϵ = 627, δ = 10−5) (Iso.) 4.1

73.5 (ϵ = 4, δ = 10−5) (DSI) 12.3
(ϵ = 312, δ = 10−5) (Iso.) 5.1

(d). m = 80 Sources

Test ACC (%) Ind. Guarantee ASR (%)

79.3 (ϵ = 8, δ = 10−5) (DSI) 3.4
(ϵ = 350, δ = 10−5) (Iso.) 3.9

73.7 (ϵ = 4, δ = 10−5) (DSI) 4.7
(ϵ = 179, δ = 10−5) (Iso.) 3.6
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