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Byzantine Broadcast (BB) is a central question in distributed systems, and an important challenge is to understand
its round complexity. Under the honest majority setting, it is long known that there exist randomized protocols
that can achieve BB in expected constant rounds, regardless of the number of nodes 𝑛. However, whether we
can match the expected constant round complexity in the corrupt majority setting — or more precisely, when
𝑓 ≥ 𝑛/2 + 𝜔 (1) — remains unknown, where 𝑓 denotes the number of corrupt nodes.

In this paper, we are the first to resolve this long-standing question. We show how to achieve BB in expected
𝑂 ((𝑛/(𝑛 − 𝑓 ))2) rounds. Our results hold under a weakly adaptive adversary who cannot perform “after-the-fact
removal” of messages already sent by a node before it becomes corrupt. We also assume trusted setup and the
Decision Linear (DLIN) assumption in bilinear groups.
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1 INTRODUCTION
Byzantine Agreement (BA) is one of the most fundamental problems in fault tolerant distributed
computing [4, 8, 27] and of increasing interest given recent advances in cryptocurrencies [3, 14, 23].
In this paper, we consider the “broadcast” formulation of Byzantine Agreement, henceforth also
called Byzantine Broadcast (BB): imagine that there are 𝑛 nodes among which there is a designated
sender. The sender is given an input bit 𝑏 ∈ {0, 1} and wants to send this bit to every other node.
Although up to 𝑓 < 𝑛 − 1 nodes can be corrupted and deviate arbitrarily from the prescribed protocol,
we would like to nonetheless ensure two key properties: 1) consistency requires that all honest nodes
must output the same bit (even when the sender is corrupt); and 2) validity requires that all honest
nodes output the sender’s input bit if the sender is honest 1.

An important question to understand is the round complexity of Byzantine Broadcast. Dolev and
Strong [12] showed that assuming (idealized) digital signatures, there is a deterministic protocol
achieving 𝑓 + 1 rounds; and moreover, 𝑓 + 1 rounds is the best one can hope for in any deterministic
protocol. It is also widely understood that randomization can help overcome the (𝑓 + 1)-round barrier
in the honest majority setting. Specifically, many elegant works have shown expected constant-round
protocols assuming honest majority [2, 15, 17, 26].

For a long while, the community was perplexed about the following natural question: can we
achieve sublinear-round Byzantine Broadcast under dishonest majority? The ingenious work by
Garay et al. [20] was the first to demonstrate a positive result although their construction achieves
sublinear round complexity only under a narrow parameter regime: specifically, they constructed an
expected Θ((𝑓 −𝑛/2)2)-round protocol, and the subsequent work of Fitzi and Nielsen [18] improved
it to Θ(𝑓 −𝑛/2) rounds. In other words, these constructions achieve sublinear number of rounds only
if 𝑓 ≤ 𝑛/2 + 𝑜 (𝑛). This is somewhat unsatisfying since even for 𝑓 = 0.51𝑛, their results would be
inapplicable.

Very recently, the frontier of our understanding was again pushed forward due to Chan, Pass, and
Shi [9]. Assuming trusted setup and standard cryptographic assumptions, their protocol achieves
Byzantine Broadcast with probability 1 − 𝛿 for any 𝑓 ≤ (1 − 𝜖) · 𝑛 in poly log(1/𝜖, 1/𝛿) rounds (both
in expectation and worst-case), where 𝜖, 𝛿 ∈ (0, 1) are two parameters that the protocol takes as
input. Although their work represents exciting progress on a long stagnant front, it fails to match the
asymptotic (expected) round complexity of known honest majority protocols — for honest majority, it
is long known how to achieve expected constant round complexity [2, 26]. We thus ask the following
question: can we achieve Byzantine Broadcast in expected constant rounds in the corrupt majority
setting?

1.1 Our Contributions
We present a Byzantine Broadcast protocol that achieves expected 𝑂 (( 𝑛

𝑛−𝑓 )
2) rounds. This means

that for 𝑓 = (1 − 𝜖)𝑛 where 𝜖 ∈ (0, 1) may be an arbitrarily small constant, our protocol achieves
expected constant rounds. Our protocol works even under an adaptive adversary, assuming a trusted
setup and standard cryptographic assumptions in an algebraic structure called bilinear groups. In
this paper, we assume that when the adaptive adversary corrupts a node 𝑣 in some round 𝑟 , it cannot
erase the message 𝑣 has already sent in round 𝑟 but it can make the now-corrupt 𝑣 inject additional
messages into round 𝑟 — such a model is also referred to as weakly adaptive in earlier works.

To the best of our knowledge, our work is the first to achieve an expected constant-round BB
protocol for any 𝑓 ≥ 𝑛/2 + 𝜔 (1). Previously, no result was known even for the static corruption

1An alternative formulation is the “agreement” version where every node receives an input bit 𝑏, and validity requires that if
all honest nodes receive the same input bit 𝑏, then honest nodes must output 𝑏. However, this agreement notion is known to be
impossible under corrupt majority.
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setting, and even under any setup assumptions. We compare our results with the state-of-art results in
Table 1 and summarize our results in Theorem 1.1.

Garay et al.[20] Fitzi et al.[18] Chan et al.[9] This paper

Expected round

complexity
Θ((2𝑓 − 𝑛)2) Θ(2𝑓 − 𝑛) Same as worst-case Θ(( 𝑛

𝑛−𝑓 )
2)

Worst-case round

complexity with 1 − 𝛿

failure probability

Θ(log( 1
𝛿
) + (2𝑓 − 𝑛)2) Θ(log( 1

𝛿
) + (2𝑓 − 𝑛)) Θ(log( 1

𝛿
) · 𝑛

𝑛−𝑓 ) Θ( log(1/𝛿)log(𝑛/𝑓 ) ·
𝑛

𝑛−𝑓 )

Table 1. A comparison between our results and previous work under dishonest majority.

Theorem 1.1 (Expected constant round BB under adaptive corruption). Assume trusted setup and
that the decisional linear assumption holds in suitable bilinear groups. Then, there exists a BB
protocol with expected 𝑂 (( 𝑛

𝑛−𝑓 )
2) round complexity for any non-uniform p.p.t . adversary that can

adaptively corrupt 𝑓 < 𝑛 − 1 nodes.

In particular, we use the same trusted setup as Abraham et al. [1] since we directly use the
adaptively secure Verifiable Random Function (VRF) they constructed. The trusted setup can be
viewed as a trusted PKI: a trusted entity chooses a secret key for every player, and publishes a related
public key to some public bulletin board. Specifically, each player’s secret key involves a signing key
and a PRF key. The corresponding public key involves the verification key of the signature scheme,
and a commitment of the PRF key. In the rest of the paper, we will use the adaptively secure Verifiable
Random Function (VRF) of Abaram et al. in a somewhat blackbox manner without opening up its
detailed implementation.

Throughout the paper, we assume a synchronous network, i.e., honest nodes can deliver messages to
each other within a single round. This assumption is necessary since without it, Byzantine Broadcast
is long known to be impossible under more than 𝑛/3 corruptions [13].

1.2 Interpreting Our Result
Below we situate our result in context to help the reader understand how tight the bound is as well as
the assumptions we make.

On the tightness of the bound and the resilience parameter. Theorem 1.1 says that if the number
of honest nodes is an arbitrarily small constant fraction (e.g., 0.01%), we can achieve expected
constant rounds. The restriction on the number of honest nodes is necessary in light of an elegant
lower bound proven by Garay et al. [20]: they showed that even randomized protocols cannot achieve
BB in less than Θ(𝑛/(𝑛 − 𝑓 )) number of rounds, even assuming static corruption and allowing
reasonable setup assumptions. Note that their lower bound says that when almost all nodes can be
corrupt except 𝑂 (1) nodes who remain honest, then even randomized protocols must incur linear
number of rounds. Comparing their lower bound and our upper bound side by side, one can see that
for the (narrow) regime 𝑛 − 𝑓 = 𝑜 (𝑛), there is still an asymptotical gap between our upper bound and
their lower bound. Whether we can construct an upper bound that matches their lower bound in this
regime remains open, even under static corruptions and allowing any reasonable setup assumptions.

On the weakly adaptive model. Our result holds in the weakly adaptive model [1, 21, 31]. In this
model, the adversary can adaptively corrupt a node; and if some node 𝑢 becomes newly corrupt in
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round 𝑟 , the adversary can inject new messages on behalf of 𝑢 in the same round 𝑟 ; however, the
adversary cannot erase the messages 𝑢 already sent in round 𝑟 prior to becoming corrupt.

We now compare our model with the work of Hirt and Zikas [25] and Garay et al. [19]. Both
these works consider simulation-based notions of security. Both notions imply that validity must
be guaranteed as long as the designated sender is honest in the first round (but may be corrupt
later). However, in our work, we only need validity if the sender remains honest at the end of
the protocol execution. On the other hand, Garay et al.’s model imposes more restrictions on the
adverary in comparison with our weakly adaptive model: not only is the adversary unable to perform
“after-the-fact” message removal, it also must wait for one network delay after a node 𝑖 becomes
corrupt, before it is able to inject messages on behalf of 𝑖. In this sense, Garay et al. [19]’s model is
incomparable with ours.

The difference between Garay et al. [19] and Hirt and Zikas [25] is the following: Hirt and
Zikas [25] assume a powerful adversary that can corrupt a node even in the middle of a round, i.e., in
between sending messages to two other players. Garay et al. [25] remove this capability from the
adversary. This explains why Garay et al. can have a feasibility result which is impossible in Hirt and
Zikas’s model.

Hirt and Zikas [25] and Garay et al. [19] both showed that the Dolev-Strong protocol is not secure
in their models — henceforth referred to as the Hirt-Zikas attack. The Hirt-Zikas attack works as
follows: the adversary waits for the initial message from the uncorrupted sender. If the adversary
likes the message, it will act honestly. If the adversary does not like the message, it will adaptively
corrupt the sender, let it sign on a different message and forward the equivocating signatures to all
other nodes in the next round. This causes the sender to be disqualified and nodes would agree on
some default message. This attack does not work under our definitions, because we do not insist on
achieving validity if the sender is adaptively corrupt in the middle of the protocol.

We also want to compare to the strongly adaptive model [12, 17, 20] which is often considered
by classical consensus literatures. This was also the widely accepted model in the early distributed
systems and multi-party protocols literature (see also Definition 1 in Feldman’s thesis [16] and Figure
4, page 176 of Canetti’s excellent work [7]). In the strongly adaptive model, the adversary is allowed
to perform “after-the-fact” message removal, i.e., if the adversary adaptively corrupts a node 𝑢 in
round 𝑟 , it can erase all messages 𝑢 had sent in round 𝑟 prior to becoming corrupt. Thus, a strongly
adaptive adversary has strictly more power than a weakly adaptive one. The weakly adaptive model
was inspired by the line of work on blockchains and sublinear-communication, large-scale consensus
protocols. Many famous protocols including Nakamoto’s consensus [30, 34], and other subsequent
blockchain protocols [1, 10, 11, 32, 33, 35] were proven secure in the weakly adaptive model, and
it is widely known that their security fails to hold in the strongly adaptive model. The recent work
by Abraham et al. [1] showed that this is not a coincidence — in the strongly adaptive model, no
consensus protocol can achieve subquadratic communication overhead!

We adopt the weakly adaptive model inspired by the blockchain line of work. The techniques
in this paper do not easily extend to the strongly adaptive model; there is an attack that breaks our
protocol under the strongly adaptive model.

It remains an open question whether in the strongly adaptive model, expected constant round BB
is possible under even 51% corruption. In fact, in the strongly adaptive model under 51% corruption,
even sublinear-round protocols were not known. In a companion work [36], we show that assuming
trusted setup, the existence of time-lock puzzles and other reasonable cryptographic assumptions,
one can construct BB with polylogarithmic round complexity in the strongly adaptive model. It is
interesting to note that the techniques used in that work [36] depart completely from the ones in
this paper. In light of our companion paper [36], it remains open 1) whether any sublinear-round
BB is possible under 51% strongly adaptive corruption, without time lock puzzles; and 2) whether
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expected constant round BB is possible under 51% strongly adaptive corruption and any reasonable
assumptions. New upper- or lower-bounds in these directions would be exciting.

On the necessity of trusted setup. We assume a trusted setup to get our weakly adaptive BB.
Due to the famous lower bound by Lamport et al. [28], some setup assumption is necessary to
get consensus under at least 𝑛/3 (even static) corruptions. We do not understand if our trusted
setup can be weakened, and we leave it as another exciting open question. We stress, however, that
expected constant-round BB under 51% corruption is an open question whose answer has eluded the
community for more than three decades, under any assumption, allowing any (reasonable) setup,
and even under static corruption. We therefore believe that despite our trusted setup and weakly
adaptive restrictions, our result is an important step forward in this line of work.

2 TECHNICAL OVERVIEW
2.1 Preliminaries

Problem Definition. The problem of Byzantine Broadcast has been widely explored. Suppose there
are 𝑛 nodes (sometimes also called parties) in a distributed system, indexed from 1 to 𝑛, respectively.
The communication within the system is modeled by a synchronous network, where a message
sent by an honest node in some round 𝑟 is guaranteed to be delivered to an honest recipient at the
beginning of the next round 𝑟 + 1. Among the 𝑛 nodes in the system, there is a designated sender
whose identity is common knowledge. Before the protocol begins, the sender receives an input bit
𝑏. All nodes then engage in interactions where the sender aims to send the bit 𝑏 to everyone. At
the end of the protocol, each node 𝑢 outputs a bit 𝑏𝑢 . Henceforth, we assume that the protocol is
parameterized with a security parameter 𝜆. We say that a protocol achieves Byzantine Broadcast if it
satisfies the following guarantees except with negligibly small in 𝜆 probability.

• Consistency: for any two honest nodes 𝑢 and 𝑣 , 𝑏𝑢 = 𝑏𝑣 .
• Validity: if the designated sender is honest, for any honest node 𝑢, 𝑏𝑢 = 𝑏.

Although our main definition is for agreeing on a single bit, our approach easily extends to multi-
valued BB too.

Adversary Model. At any point of time during the protocol’s execution a node can either be honest
or corrupt. Honest nodes correctly follow the protocol, while corrupt nodes are controlled by an
adversary and can deviate from the prescribed protocol arbitrarily. We allow the adversary to be
rushing, i.e., it can observe the messages honest nodes want to send in round 𝑟 before deciding what
messages corrupt nodes send in the same round 𝑟 .

We consider an adaptive adversary in our paper. In any round 𝑟 , it can adaptively corrupt honest
nodes after observing the messages they want to send in round 𝑟 , as long as the total number of
corrupted nodes does not exceed an upper bound 𝑓 . If a node 𝑣 ∈ [𝑛] becomes newly corrupt in
round 𝑟 , the adversary can make it inject new messages of its choice in the present round 𝑟 ; however,
the adversary cannot perform “after-the-fact removal”, i.e., erase the messages 𝑣 sent in round 𝑟

before it became corrupt.

Modeling Setup. We will allow setup assumptions as well as standard cryptography. Our protocol
makes use of a public-key infrastructure and digital signatures, and for simplicity in this paper
we assume that the signature scheme is ideal. We adopt a standard idealized signature model, i.e.,
imagine that there is a trusted functionality that keeps track of all messages nodes have signed and
answers verification queries by looking up this trusted table. Under such an idealized signature model,
no signature forgery is possible. When we replace the ideal signature with a real-world instantiation
that satisfies the standard notion of “unforgeability under chosen-message attack”, all of our theorems
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and lemmas will follow accounting for an additive, negligibly small failure probability due to the
failure of the signature scheme — this approach has been commonly adopted in prior works too and
is well-known to be cryptographically sound (even against adaptive adversaries).

For other cryptographic primitives we adopt, e.g., verifiable random functions, we do not assume
idealized primitives since the computationally sound reasoning for these primitives is known to have
subtleties.

2.2 Technical Roadmap
Byzantine Broadcast under dishonest majority is challenging even under static corruption because the
standard random committee election technique fails to work. More concretely, in the honest majority
setting and assuming static corruption, a well-known random committee election technique can
allow us to compile any polynomial-round BB to a poly-logarithmic round BB protocol. However, as
already pointed out by Chan et al. [9], this technique is inapplicable to the corrupt majority setting
even under a static adversary.2 Similarly, we also know of no way to extend the recent techniques of
Chan et al. [9] to obtain our result. Instead, we devise novel techniques that redesign the consensus
protocol from the ground up.

Trust graph maintenance (Section 3). First, we devise a new method for nodes to maintain a trust
graph over time. While previous work [5, 22] also used consistency graph in multiparty protocols
and secret sharing, our trust graph is of a different nature from prior work. We are the first to tie the
round complexity of distributed consensus with the diameter of a trust graph, and upper bound the
diameter.

The vertices in the trust graph represent nodes in the BB protocol; and an edge between 𝑢 and 𝑣

indicates that 𝑢 and 𝑣 mutually trust each other. Initially, every node’s trust graph is the complete
graph; however, during the protocol, if some nodes misbehave, they may get removed completely or
get disconnected from other nodes in honest nodes’ trust graphs. On the other hand, honest nodes
will forever remain direct neighbors to each other in their respective trust graphs.

There are a few challenges we need to cope with in designing the trust graph mechanism. First, if
a node 𝑣 misbehaves in a way that leaves a cryptographic evidence implicating itself (e.g., double-
signing equivocating votes), then honest nodes can distribute this evidence and remove 𝑣 from their
trust graphs. Sometimes, however, 𝑣 may misbehave in a way that does not leave cryptographic
evidence: for example, 𝑣 can fail to send a message it is supposed to send to 𝑢, and in this case 𝑢
cannot produce an evidence to implicate 𝑣 . In our trust graph mechanism, we allow 𝑢 to complain
about 𝑣 without providing an evidence, and a receiver of this complaint can be convinced that at least
one node among 𝑢 and 𝑣 is corrupt (but it may not be able to tell which one is corrupt). In any case,
the receiver of this complaint may remove the edge (𝑢, 𝑣) from its trust graph. We do not allow a
node 𝑢 to express distrust about an edge (𝑣,𝑤) that does not involve itself — in this way a corrupt
node cannot cause honest nodes to get disconnected in their trust graphs.

A second challenge we are faced with is that honest nodes may not have agreement for their
respective trust graphs at any point of time — in fact, reaching agreement on their trust graphs may be
as hard as the BB problem we are trying to solve in the first place. However, if honest nodes always
share their knowledge to others, we can devise a mechanism that satisfies the following monotonicity
condition: any honest node’s trust graph in round 𝑡 > 𝑟 is a subgraph of any honest node’s trust graph
in round 𝑟 . In our protocol we will have to work with this slightly imperfect condition rather than
complete agreement.

2As Chan et al. [9] point out, the random committee election approach fails to work for corrupt majority (even for static
corruption), because members outside the committee cannot rely on a majority voting mechanism to learn the outcome.
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Finally, although an honest node is convinced that besides their direct neighbors in its own trust
graph, no one else can be honest, it still must wait to hear what nodes multiple hops away say
during the protocol. This is because their direct neighbors may still trust their own neighbors, and
the neighbors’ neighbors may care about their own neighbors, etc. For information to flow from a
node 𝑣 that is 𝑟 hops away from 𝑢 in 𝑢’s trust graph may take up to 𝑟 rounds, and this explains why
the diameter of the trust graph is critical to the round complexity of our protocol. We will devise
algorithms for ensuring that honest nodes’ trust graphs have small diameter. To maintain small
diameter, we devise a mechanism for nodes to post-process their trust graphs: for example, although
a node 𝑢 may not have direct evidence against 𝑣 , if many nodes complain about 𝑣 , node 𝑢 can be
indirectly convinced that 𝑣 is indeed corrupt and remove 𝑣 .

The TrustCast building block (Section 4). A common technique in the consensus literature is to
bootstrap full consensus from weaker primitives, often called “reliable broadcast” or “gradecast”
depending on the concrete definitions [6, 17, 26]. Typically, these weaker primitives aim to achieve
consistency whether the sender is honest or not; but they may not achieve liveness if the sender is
corrupt [6, 17, 26]. Based on a weaker primitive such as “reliable broadcast” or “gradecast”, existing
works would additionally rely on random leader election to bootstrap full consensus. Roughly
speaking, in every epoch a random leader is chosen, and if the leader is honest, liveness will ensue.
Additionally, relying on the consistency property of this weaker primitive, with enough care we can
devise mechanisms for ensuring consistency within the same epoch and across epochs — in other
words, honest nodes must make the same decision no matter whether they make decisions in the
same epoch or different epochs.

In our work we devise a TrustCast building block which is also a weakening of full consensus
and we would like to bootstrap consensus from this weaker primitive. Our definition of TrustCast,
however, is tied to the trust graph and departs significantly from prior works. Specifically, TrustCast
allows a sender 𝑠 ∈ [𝑛] to send a message to everyone: if 𝑠 wants to continue to remain in an honest
node 𝑢’s trust graph, 𝑢 must receive some valid message from 𝑠 at the end of the protocol, although
different honest nodes may receive inconsistent messages from 𝑠 if 𝑠 is corrupt. At a high level, the
sender 𝑠 has three choices:

(1) it can either send the same valid message to all honest nodes;
(2) (*technical challenge) or it can fail to send a valid message to some honest node, say 𝑢, — in

this case 𝑢 will remove 𝑠 from its trust graph immediately and in the next round all honest
nodes will remove 𝑠 from their trust graphs;

(3) or 𝑢 can send equivocating messages to different honest nodes, but in the next round honest
nodes will have compared notes and discovered the equivocation, and thus they remove 𝑠 from
their trust graphs.

The first case will directly lead to progress in our protocol. In the second and third cases, 𝑠 will be
removed from honest nodes’ trust graphs; we also make progress in the sense that 𝑠 can no longer
hamper liveness in the future.

An important technical challenge for designing the TrustCast protocol lies in the second case
above: in this case, 𝑢 may not have a cryptographic evidence to implicate 𝑠 and thus 𝑢 cannot directly
convince others to remove 𝑠. However, in this case, it turns out that 𝑢 can be convinced that some of
its direct neighbors must be corrupt, and it will instead convince others to remove the edge (𝑢, 𝑣) for
every direct neighbor 𝑣 that it believes to be corrupt. Once these edges are removed, 𝑠 will land in a
“remote” part of the graph such that honest nodes can be convinced that it is corrupt and remove it
altogether.
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3 TRUST GRAPH MAINTENANCE
3.1 Overview of Trust Graph Maintenance and Invariants
At a very high level, the novelty of our approach lies in the way parties maintain and make use of an
undirected trust graph over time. In a trust graph, the vertices correspond to all or a subset of the
parties participating in the consensus protocol. An edge (𝑢, 𝑣) in the trust graph intuitively means
that the nodes 𝑢 ∈ [𝑛] and 𝑣 ∈ [𝑛] mutually trust each other. Since a node in the graph corresponds
to a party in the system, to avoid switching between the words “node" and “party", we will just use
the word “node".

Initially, every honest node’s trust graph is the complete graph over the set [𝑛], i.e., everyone
mutually trusts everyone else. However, over the course of the protocol, a node may discover
misbehavior of other nodes and remove nodes or edges from its own trust graph accordingly. We
will assume that at any point of time, an honest node 𝑢’s trust graph must be a single connected
component containing 𝑢 — effectively 𝑢 would always discard any node disconnected from itself
from its own trust graph.

Notations. Throughout the paper, we will use𝐺𝑟
𝑢 to denote the node 𝑢’s updated trust graph in round

𝑟 (after processing the graph-messages received in round 𝑟 and updating the trust graph). Sometimes,
if the round we refer to is clear, we may also write 𝐺𝑢 omitting the round 𝑟 . We also use 𝑁 (𝑣,𝐺)
to denote the set of neighbors of 𝑣 in the graph 𝐺 . In cases where the graph 𝐺 we refer to is clear,
we just abbreviate it to 𝑁 (𝑣). For convenience, we always assume that a node is a neighbor of itself.
Therefore, 𝑣 ∈ 𝑁 (𝑣) always holds.

Finally, we follow the notations in Section 2.1 where 𝑛 is the number of nodes in the system, 𝑓 is
the upper bound for the number of corrupt nodes and ℎ = 𝑛 − 𝑓 is the lower bound for the number of
honest nodes.

Important invariants of the trust graph. A very natural requirement is that corrupt nodes can
never cause honest nodes to suspect each other; in fact, we want the following invariant:

Honest clique invariant: at any time, in any honest node’s trust graph, all honest nodes form a
clique. This implies that all honest nodes must forever remain direct neighbors to each other in
their trust graphs.

The round complexity of our protocol is directly related to the diameter of honest nodes’ trust
graphs and thus we want to make sure that honest nodes’ trust graphs have small diameter. To
understand this more intuitively, we can consider an example in which three nodes, 𝑢, 𝑣 , and 𝑠 execute
Byzantine Broadcast with 𝑠 being the sender. All three nodes behave honestly except that 𝑠 drops all
messages to 𝑢. In this case, although 𝑢 is convinced that 𝑠 is corrupt and thus removes the edge (𝑢, 𝑠)
from its trust graph, it cannot prove 𝑠’s misbehavior to 𝑣 . Since 𝑣 still has reasons to believe that 𝑠
might be honest, 𝑣 will seek to reach agreement with 𝑠. Now, if 𝑢 tries to reach agreement with 𝑣 , it
has to care about what 𝑠 says. But since 𝑠 drops all messages to 𝑢, any information propagation from
𝑠 to 𝑢 must incur 2 rounds with 𝑣 acting as the relay.

This example can generalize over multiple hops: although an honest node 𝑢 ∈ [𝑛] knows that
except for its direct neighbors in its trust graph, everyone else must be corrupt; it must nonetheless
wait for information to propagate from nodes multiple hops away in its trust graph. For a node
𝑤 that is 𝑟 hops away from 𝑢 in 𝑢’s trust graph, information from 𝑤 may take 𝑟 rounds to reach
𝑢. Summarizing, for our protocol to be round efficient, we would like to maintain the following
invariant:

Small diameter invariant: at any point of time, every honest node 𝑢’s trust graph must have
small diameter.
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Finally, we stress that a difficult challenge we are faced with, is the fact that honest nodes may
never be in full agreement w.r.t. their trust graphs at any snapshot of time — in fact, attempting to
make honest nodes agree on their trust graph could be as difficult as solving the Byzantine Broadcast
problem itself. However, from a technical perspective, what will turn out to be very helpful to us, is
the following monotonicity invariant:

Monotonicity invariant: an honest node 𝑢’s trust graph in round 𝑡 > 𝑟 must be a subset of an
honest node 𝑣’s trust graph in round 𝑟 . Here, we say that an undirected graph 𝐺 = (𝑉 , 𝐸) is a
subset of another undirected graph 𝐺 ′ = (𝑉 ′, 𝐸 ′) iff 𝑉 ⊆ 𝑉 ′ and 𝐸 ⊆ 𝐸 ′.

The above trust graph monotonicity invariant can be maintained because of the following intuition:
whatever messages an honest node 𝑣 ∈ [𝑛] sees in round 𝑟 , 𝑣 can relay them such that all other honest
nodes must have seen them by round 𝑟 + 1 — in this way the honest node 𝑢 would perform the same
edge/node removal in round 𝑟 + 1 as what 𝑣 performed in round 𝑟 .

3.2 Conventions and Common Assumptions
Throughout our paper, we assume that message echoing among honest nodes is implicit (and our
protocol will not repeatedly state the echoing):

Implicit echoing assumption: All honest nodes echo every fresh message they have heard from
the network, i.e., as soon as an honest node 𝑢 receives a message 𝑚 at the beginning of some
round 𝑟 , if this message is well-formed and has not been received before, 𝑢 relays it to everyone.

Each node has a consensus module (see Sections 4 and 5) and a trust graph module which will be
described in this section. Messages generated by the trust graph module and the consensus module
will have different formats. Henceforth, we may call messages generated by the trust graph module
graph messages; and we may call all other messages consensus messages.

Below, we state some assumptions about the modules and their interfaces. We assume that all
messages generated by the consensus module are of the following format:

Message format of the consensus module: All protocol messages generated by the consensus
module are of the form (T, 𝑒, payload) along with a signature from the sender, where T is a string
that denotes the type of the message, 𝑒 ∈ N denotes the epoch number (the meaning of this will
be clear later in Section 5), and payload is a string denoting an arbitrary payload. Each type of
message may additionally require its payload to satisfy some wellformedness requirements.

For example, (vote, 𝑒, 𝑏) and (comm, 𝑒, E) represent vote messages and commit messages, respectively
in our Byzantine Broadcast protocol (see Section 5), where vote and comm denote the type of the
message, 𝑒 denotes the epoch number, and the remainder of the message is some payload.

In our consensus module, nodes can misbehave in different ways, and some types of misbehaviors
can generate cryptographic evidence to implicate the offending node. We define equivocation evidence
below.

Equivocation evidence. In our consensus module, honest nodes are not supposed to double-sign
two different messages with the same type and epoch number — if any node does so, it is said
to have equivocated. Any node that has equivocated must be malicious. The collection of two
messages signed by the same node 𝑢 ∈ [𝑛], with the same type and epoch but different payloads,
is called an equivocation evidence for 𝑢.

3.3 Warmup: Inefficient Trust Graph Maintenance Mechanism
As a warmup, we first describe an inefficient mechanism for nodes to maintain a trust graph over
time such that the aforementioned three invariants are respected. In this warmup mechanism, nodes
would need an exponential amount of computation for updating their trust graphs. However, inspired
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by this inefficient warmup scheme, we can later construct a better approach that achieves polynomial
time (see Section 3.4).

Note that if the trust graph always remains the complete graph, obviously it would satisfy the
aforementioned three invariants. However, keep in mind that the goal for trust graph maintenance
is to make sure that corrupt nodes do not hamper liveness. In our protocol, once a node starts to
misbehave in certain ways, each honest node would remove them from its trust graph such that they
would no longer care about reaching agreement with them.

In our warmup scheme, every node maintains its trust graph in the following manner:

Warmup: an inefficient trust graph maintenance mechanism
• Node removal upon equivocation evidence. First, upon receiving an equivocation evidence

implicating some node 𝑣 ∈ [𝑛], a node removes 𝑣 from its trust graph as well as all 𝑣’s
incident edges. After the removal, call the post-processing mechanism described below
to update the trust graph.
• Pairwise distrust messages and edge removal. Sometimes, the consensus module of node
𝑢 can observe that a direct neighbor 𝑣 in its trust graph has not followed the honest
protocol (e.g., 𝑢 is expecting some message from 𝑣 but 𝑣 did not send it); however, 𝑢 may
not have a cryptographic evidence to prove 𝑣’s misbehavior to others. In this case, 𝑢’s
consensus module calls the Distrust(𝑣) operation
– When 𝑢’s trust graph module receives a Distrust(𝑣) call, it signs and echoes a distrust

message (distrust, (𝑢, 𝑣)).
– When a node 𝑤 ∈ [𝑛] receives a message of the form (distrust, (𝑢, 𝑣)) signed by 𝑢

(𝑤 and 𝑢 might be the same user), 𝑤 removes the edge (𝑢, 𝑣) from its own trust grapha

and calls the post-processing procedure.
• Post-processing for maintaining 𝑂 (𝑛/ℎ) diameter. The diameter of the trust graph can

grow as nodes and edges are being removed. To maintain the property that honest nodes’
trust graphs have small diameter, each node performs the following post-processing every
time it removes a node or an edge from its trust graph (recall that ℎ denotes the number
of honest nodes):

– Repeat: find in its trust graph a node or an edge that is not contained in a clique of
size ℎ (henceforth, such a clique is called an ℎ-clique), and remove this node or edge;
Until no such node or edge exists.

– 𝑢 then removes any node that is disconnected from 𝑢 in 𝑢’s trust graph
Note that the post-processing may be inefficient since it is NP-hard to decide whether
there exists an ℎ-clique in a graph.

aSince each node will receive its own messages at the beginning of the next round, when a node 𝑢 calls Distrust(𝑣) ,
the edge (𝑢, 𝑣) will be removed from its own trust graph at the beginning of the next round.

Remark 1. Note that a (distrust, (𝑢, 𝑣)) message is only valid if it is signed by 𝑢, i.e., the first
node in the pair of nodes — this makes sure that corrupt nodes cannot misuse distrust messages to
cause an edge between two honest nodes to be removed (in any honest node’s trust graph).

Suppose that an honest node never declares Distrust on another honest node — note that this
is a condition that our protocol must respect and it will be proved in Theorem 4.2 of Section 4. It
is not too hard to check that the monotonicity invariant is maintained due to the implicit echoing
assumption. We can also check that honest nodes indeed form a clique in all honest nodes’ trust
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graphs. However, proving that all honest nodes’ trust graphs have 𝑂 (𝑛/ℎ) diameter is more technical:
it relies on the following graph theoretical observation:

Claim 3.1 (Small diameter of ℎ-clique graphs). Any ℎ-clique graph must have diameter at most
𝑑 = ⌈𝑛/ℎ⌉ + ⌊𝑛/ℎ⌋ − 1 where an ℎ-clique graph is one such that every node or edge is contained
within a clique of size ℎ. Henceforth, we abbreviate "a clique of size ℎ" as an ℎ-clique.

PROOF. We will prove by contradiction. Assume an ℎ-clique-graph 𝐺 = (𝑉 , 𝐸) has diameter
𝑑 ′ > 𝑑. This means that there exists a path 𝑢0, 𝑢1, · · · , 𝑢𝑑′ on 𝐺 which is the shortest path between
two nodes 𝑢0 and 𝑢𝑑′ . By definition, there exists an ℎ-clique 𝐶𝑖 containing both 𝑢𝑖 and 𝑢𝑖+1 for any
0 ≤ 𝑖 ≤ 𝑑 ′ − 1. Further, any 𝐶𝑖 and 𝐶 𝑗 must be disjoint if 𝑖 − 𝑗 ≥ 2. Otherwise, there would exist a
path between 𝑢 𝑗 and 𝑢𝑖+1 of length 2, contradicting our assumption that the path is the shortest path.
We now discuss different scenarios based on whether 𝑛 is perfectly divided by ℎ.
• If 𝑛 mod ℎ ≠ 0, suppose 𝑛 = 𝑘 · ℎ + 𝑙 where 𝑘 is the quotient of 𝑛 divided by ℎ and 𝑙 ∈ (0, ℎ) is

the remainder. By definition, 𝑑 = ⌈𝑛/ℎ⌉ + ⌊𝑛/ℎ⌋ − 1 = 2𝑘 is even and 𝑑 ′ > 2𝑘 . Thus,���𝐶0 ∪𝐶1 ∪ · · · ∪𝐶𝑑′−1

��� ≥ ���𝐶0 ∪𝐶2 ∪ · · · ∪𝐶2𝑘

��� = ���𝐶0

��� + ���𝐶2

��� + · · · + ���𝐶2𝑘

���
≥ ℎ · (𝑘 + 1) > 𝑘 · ℎ + 𝑙 = 𝑛.

(1)

The equation in the first line holds because𝐶0,𝐶2, · · · ,𝐶2𝑘 are disjoint. We reach a contradiction
here since we only have 𝑛 nodes.
• If 𝑛 is perfectly divided by ℎ, i.e., 𝑛 = 𝑘 ·ℎ for some integer 𝑘 , then 𝑑 = 2𝑘 −1 is an odd number.

We then have 𝑑 ′ ≥ 2𝑘 and,���𝐶0 ∪𝐶1 ∪ · · · ∪𝐶𝑑′−2

��� ≥ ���𝐶0 ∪𝐶2 ∪ · · · ∪𝐶2𝑘−2

��� = ���𝐶0

��� + ���𝐶2

��� + · · · + ���𝐶2𝑘−2

��� ≥ ℎ · 𝑘 = 𝑛. (2)

This means that 𝐶0 ∪𝐶1 ∪ · · · ∪𝐶𝑑′−2 already covers all nodes in the graph. So the diameter of
the graph should be 𝑑 ′ − 1, contradicting our assumption that the diameter is 𝑑 ′.

This concludes our proof that the diameter of any ℎ-clique-graph is upper-bounded by 𝑑 = ⌈𝑛/ℎ⌉ +
⌊𝑛/ℎ⌋ − 1. □

This upper bound is tight and can be reached when the graph is a multi-layer graph (see Figure 1),
where the layer sizes alternate between 1 and ℎ − 1. In Figure 1, a node is connected with all other
nodes in its own layer and the two neighboring layers. Formally, let us denote 𝑆𝑖 as the set of nodes
in the 𝑖𝑡ℎ layer (0 ≤ 𝑖 ≤ 𝑑). The graph 𝐺 = (𝑉 , 𝐸) satisfies

|𝑆𝑖 | =
{
1 if 𝑖 is even
ℎ − 1 if 𝑖 is odd

, 𝑉 =

𝑑⋃
𝑖=0

𝑆𝑖 , 𝐸 =

( 𝑑⋃
𝑖=0
(𝑆𝑖 × 𝑆𝑖 )

)
∪
( 𝑑⋃
𝑖=1
(𝑆𝑖−1 × 𝑆𝑖 )

)
.

…
h-1 clique

…
…

…
h-1 clique

…

…
h-1 clique

…

Fig. 1. A multi-layer graph with the layer size alternating between 1 and ℎ − 1. Each layer is completely
connected within itself.

We state the following theorem about the warmup scheme.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: December 2020.



Expected Constant Round Byzantine Broadcast under Dishonest Majority 111:11

Theorem 3.2 (Inefficient trust graph mechanism). Suppose that an honest node never declares
Distrust on another honest node (which is proven to be true in Section 4). Then, the above trust
graph maintenance mechanism satisfies the honest clique invariant, the monotonicity invariant,
and moreover, at any point of time, any honest node’s trust graph has diameter at most 𝑑 =

⌈𝑛/ℎ⌉ + ⌊𝑛/ℎ⌋ − 1.

PROOF. To see the honest clique invariant, first observe that no honest node will ever see an
equivocation evidence implicating an honest node assuming that the signature scheme is ideal.
Therefore, an honest node can never remove another honest node from its trust graph due to having
observed an equivocation evidence. Furthermore, since an honest node never declares Distrust on
another honest node, no honest node will ever remove an edge between two honest nodes in its trust
graph.

The monotonicity invariant follows from the implicit echoing of honest nodes and the fact that
if (1) 𝐺𝑢 is a subset of 𝐺𝑣 and (2) an edge 𝑒 is not in any ℎ-clique in 𝐺𝑣 , then 𝑒 is also not in any
ℎ-clique in 𝐺𝑢 . We can prove the monotonicity invariant using induction. In the base case where the
round number 𝑟 = 0, the trust graph is a complete graph. Thus, for any two honest nodes 𝑢 and 𝑣 ,
𝐺1
𝑣 ⊆ 𝐺0

𝑢 always holds. We will show that for any round number 𝑟 , 𝐺𝑟+1
𝑣 ⊆ 𝐺𝑟

𝑢 implies 𝐺𝑟+2
𝑣 ⊆ 𝐺𝑟+1

𝑢 .
Suppose in round 𝑟 , node 𝑢 receives distrust messages and equivocation proofs on edges 𝑒1, · · · , 𝑒𝑚 .
𝑢’s trust graph in round 𝑟 + 1 would then be

𝐺𝑟+1
𝑢 ← for 𝑖 = 1 to𝑚,

(
apply (remove 𝑒𝑖 ) and post-processing on 𝐺𝑟

𝑢

)
.

The post-processing removes any edge not in any ℎ-clique. Therefore, this is equivalent to

𝐺𝑟+1
𝑢 ← apply post-processing on 𝐺𝑟

𝑢 \ {𝑒1, · · · , 𝑒𝑚}.3

Here, we use𝐺𝑟
𝑢 \{𝑒1, · · · , 𝑒𝑚} to denote the subgraph achieved by removing set of edges {𝑒1, · · · , 𝑒𝑚}

from 𝐺𝑟
𝑢 . This notation will be continuously used in the rest of the paper. Since each honest node

echoes all fresh messages it receives, 𝑣 would receive the distrust messages and equivocation proofs
on edges 𝑒1, · · · , 𝑒𝑚 in round 𝑟 + 1. Therefore,

𝐺𝑟+2
𝑣 ⊆ apply post-processing on 𝐺𝑟+1

𝑣 \ {𝑒1, · · · , 𝑒𝑚}.4

If 𝐺𝑟+1
𝑣 ⊆ 𝐺𝑟

𝑢 , then 𝐺𝑟+1
𝑣 \ {𝑒1, · · · , 𝑒𝑚} ⊆ 𝐺𝑟

𝑢 \ {𝑒1, · · · , 𝑒𝑚}. Thus, if an edge is not in any ℎ-clique
in 𝐺𝑟

𝑢 \ {𝑒1, · · · , 𝑒𝑚}, it is also not in any ℎ-clique in 𝐺𝑟+1
𝑣 \ {𝑒1, · · · , 𝑒𝑚}. This means that the post-

processing does not change this subset relationship and 𝐺𝑟+2
𝑣 ⊆ 𝐺𝑟+1

𝑢 holds. This completes our
induction proof on the monotonicity invariant.

Finally, to show the statement about the diameter, observe that the post-processing procedure
ensures that the resulting trust graph is an ℎ-clique graph. Now the statement follows due to Claim 3.1.

□

3.4 An Efficient Trust Graph Maintenance Mechanism
Although the warmup mechanism in Section 3.3 is inefficient, we can draw some inspiration from
it and design an efficient polynomial-time algorithm. In our efficient mechanism, we will maintain
every node’s trust graph to have diameter at most 𝑑, rather than insisting on the more stringent
requirement that the graph must be an ℎ-clique graph.

Our idea is to modify the post-processing procedure in the earlier inefficient mechanism to the
following efficient approach. Recall that we use 𝑁 (𝑣,𝐺) to represent the set of 𝑣’s neighbors in 𝐺 . If
the graph 𝐺 we are referring to is clear, we just abbreviate it as 𝑁 (𝑣).
3The reason we apply post processing after each edge removal is to guarantee that the diameter of the trust graph is upper
bounded by 𝑑 at any point of the protocol.
4𝑣 might have received additional distrust messages or equivocation proofs.
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Post-processing for a user 𝑢: Iteratively find an edge (𝑣,𝑤) in the trust graph such that |𝑁 (𝑣) ∩
𝑁 (𝑤) | < ℎ, and remove the edge; until no such edge can be found. Afterwards, remove all
nodes disconnected from 𝑢 in 𝑢’s trust graph.

We first show that the new post-processing does not remove edges between honest nodes. Upon
termination, it also guarantees that the diameter of the trust graph is upper bounded by 𝑂 (𝑛/ℎ).

Lemma 3.3. The post-processing (1) only removes edges not in any ℎ-clique and (2) guarantees that
the diameter of the trust graph is upper bounded by 𝑑 = ⌈𝑛/ℎ⌉ + ⌊𝑛/ℎ⌋ − 1.

PROOF. Let us consider post-processing on a node 𝑢’s trust graph 𝐺𝑢 . For each edge (𝑣,𝑤)
removed during post-processing, |𝑁 (𝑣,𝐺𝑢) ∩ 𝑁 (𝑤,𝐺𝑢) | < ℎ holds (we only discuss the graph 𝐺𝑢

here, so we will abbreviate the neighbor sets as 𝑁 (𝑣) and 𝑁 (𝑤)). Any clique containing (𝑣,𝑤) can
only contain nodes that are in 𝑁 (𝑣) ∩ 𝑁 (𝑤). So there does not exist an ℎ-clique in 𝐺𝑢 that contains
(𝑣,𝑤).

We also need to prove that the diameter of the trust graph becomes no larger than 𝑑 after the
post processing. From this point, we will use 𝐺𝑢 just to refer to the trust graph of 𝑢 when the
post-processing terminates. Suppose on the contrary, the diameter of 𝐺𝑢 is larger than 𝑑. The post
processing guarantees that for any (𝑣,𝑤) ∈ 𝐺𝑢 , it holds that |𝑁 (𝑣) ∩ 𝑁 (𝑤) | ≥ ℎ. Since the diameter
of 𝐺𝑢 is larger than 𝑑 , there must exist two nodes 𝑣,𝑤 ∈ 𝐺𝑢 such that 𝑑 (𝑣,𝑤,𝐺𝑢) = 𝑑 + 1. We define
the following notations:
• Suppose the shortest path between 𝑣 and 𝑤 is 𝑣0, · · · , 𝑣𝑑+1, where 𝑣0 is node 𝑣 and 𝑣𝑑+1 is node
𝑤 .
• We use 𝑆𝑖 to denote the set of nodes distance 𝑖 away from 𝑣 , i.e., 𝑆𝑖 = {𝑣 ′ | 𝑑 (𝑣, 𝑣 ′,𝐺𝑢) = 𝑖}.

By definition, for any 𝑖 ≠ 𝑗 , 𝑆𝑖 and 𝑆 𝑗 should be disjoint. Further, any 𝑣𝑖 should belong to the set 𝑆𝑖 .
Therefore, any 𝑁 (𝑣𝑖 ) should be a subset of 𝑆𝑖−1 ∪ 𝑆𝑖 ∪ 𝑆𝑖+1. Since |𝑁 (𝑣𝑖 ) ∩ 𝑁 (𝑣𝑖+1) | ≥ ℎ holds for
any 0 ≤ 𝑖 ≤ 𝑑 , we have

ℎ ≤ |𝑁 (𝑣𝑖 ) ∩ 𝑁 (𝑣𝑖+1) | ≤ |(𝑆𝑖−1 ∪ 𝑆𝑖 ∪ 𝑆𝑖+1) ∩ (𝑆𝑖 ∪ 𝑆𝑖+1 ∪ 𝑆𝑖+2) | = |𝑆𝑖 ∪ 𝑆𝑖+1 | = |𝑆𝑖 | + |𝑆𝑖+1 |.

We construct a graph 𝐺 ′ = (𝑉 ′, 𝐸 ′) by connecting all nodes between any 𝑆𝑖 and 𝑆𝑖+1, i.e.,

𝑉 ′ =
𝑑+1⋃
𝑖=0

𝑆𝑖 , 𝐸
′ =

( 𝑑+1⋃
𝑖=0
(𝑆𝑖 × 𝑆𝑖 )

)
∪
( 𝑑⋃
𝑖=0
(𝑆𝑖 × 𝑆𝑖+1)

)
.

For every 0 ≤ 𝑖 ≤ 𝑑, the set 𝑆𝑖 ∪ 𝑆𝑖+1 forms a clique in 𝐺 ′. And since |𝑆𝑖 | + |𝑆𝑖+1 | ≥ ℎ holds for any
0 ≤ 𝑖 ≤ 𝑑, 𝐺 ′ is an ℎ-clique graph. However, 𝐺 ′ has diameter 𝑑 + 1. This violates Claim 3.1, which
proves that the diameter of any ℎ-clique graph is upper bounded by 𝑑 . We reach a contradiction here.
Therefore, after the post-processing terminates, the diameter of the trust graph is no larger than 𝑑.
This completes our proof. □

In the efficient trust graph maintenance mechanism, the monotonicity invariant is not as apparent.
We need to show that if an honest node 𝑢 removes an edge during post-processing, another honest
node 𝑣 would remove this edge as well in the next round. This can be achieved with the help of the
following claim.

Lemma 3.4. If 𝐺 is a subgraph of 𝐻 and we use the post-processing algorithm on both 𝐺 and 𝐻 to
get 𝐺 ′ and 𝐻 ′, then 𝐺 ′ would still be a subgraph of 𝐻 ′.

PROOF. Let us suppose that post-processing removes edges 𝑒1 = (𝑢1, 𝑣1), · · · , 𝑒𝑚 = (𝑢𝑚, 𝑣𝑚) from
𝐻 in order and we denote 𝐻𝑖 = 𝐻 \ {𝑒1, · · · , 𝑒𝑖 }. By definition of the post-processing algorithm, it

J. ACM, Vol. 37, No. 4, Article 111. Publication date: December 2020.



Expected Constant Round Byzantine Broadcast under Dishonest Majority 111:13

must be that for any 1 ≤ 𝑖 ≤ 𝑚,

|𝑁 (𝑢𝑖 , 𝐻𝑖−1) ∩ 𝑁 (𝑣𝑖 , 𝐻𝑖−1) | < ℎ.

We will prove using induction that 𝑒1, · · · , 𝑒𝑚 would be removed from 𝐺 when we run the post-
processing algorithm on 𝐺 . Firstly, since 𝐺 ⊆ 𝐻 , we have

|𝑁 (𝑢1,𝐺) ∩ 𝑁 (𝑣1,𝐺) | ≤ |𝑁 (𝑢1, 𝐻 ) ∩ 𝑁 (𝑣1, 𝐻 ) | < ℎ.

Therefore, if 𝑒1 ∈ 𝐺 , it would be removed during post-processing. Let us suppose that post-processing
has already removed 𝑒1, · · · , 𝑒𝑖 from𝐺 , and we denote the graph at this point as𝐺𝑖 . By our assumption,

𝐺𝑖 ⊆ 𝐺 \ {𝑒1, · · · , 𝑒𝑖 } ⊆ 𝐻 \ {𝑒1, · · · , 𝑒𝑖 } = 𝐻𝑖 .

Since |𝑁 (𝑢𝑖+1, 𝐻𝑖 ) ∩ 𝑁 (𝑣𝑖+1, 𝐻𝑖 ) | < ℎ, we have |𝑁 (𝑢𝑖+1,𝐺𝑖 ) ∩ 𝑁 (𝑣𝑖+1,𝐺𝑖 ) | < ℎ. This implies that
post-processing would remove 𝑒𝑖+1 as well. This completes our induction proof. □

Using Lemma 3.3 and Lemma 3.4, we can prove Theorem 3.5 as follows.

Theorem 3.5 (Efficient trust graph mechanism). Suppose that an honest node never declares
Distrust on another honest node (which is proven to be true in Section 4). Then, the efficient trust
graph maintenance mechanism satisfies the honest clique invariant, the monotonicity invariant,
and moreover, at any point of time, any honest node’s trust graph has diameter at most 𝑑 =

⌈𝑛/ℎ⌉ + ⌊𝑛/ℎ⌋ − 1.

PROOF. The honest clique invariant is not affected by the changes to the post-processing. As
argued in the proof of Theorem 3.2, it holds as long as an honest node never declares Distrust on
another honest node. By Lemma 3.3, the diameter of the trust graph is at most 𝑑 after calling the
post-processing. Since we always call the post-processing algorithm whenever we remove an edge,
the diameter of the trust graph is always upper bounded by 𝑑 .

It remains to show that the monotonicity invariant holds in the efficient trust graph mechanism.
The proof idea is the same as in the proof of Theorem 3.5. But we state it again for completeness.
We will show by induction that for any honest user 𝑢, 𝑣 and any round number 𝑟 , 𝐺𝑟+1

𝑣 ⊆ 𝐺𝑟
𝑢 . In the

base case where 𝑟 = 0, 𝐺1
𝑣 ⊆ 𝐺0

𝑢 always holds since 𝐺0
𝑢 is a complete graph. We still need to show

that for any round number 𝑟 , 𝐺𝑟+1
𝑣 ⊆ 𝐺𝑟

𝑢 implies 𝐺𝑟+2
𝑣 ⊆ 𝐺𝑟+1

𝑢 .
Suppose that in round 𝑟 , a node 𝑢 has received distrust messages and equivocation proofs on edges

𝑒1, · · · , 𝑒𝑚 . 𝑢 would then remove 𝑒1, · · · , 𝑒𝑚 from 𝐺𝑟
𝑢 and call the post-processing algorithm after

each removal. The resultant trust graph would be 𝐺𝑟+1
𝑢 . It can be shown using Lemma 3.4 that this is

equivalent to first removing 𝑒1, · · · , 𝑒𝑚 and then calling the post-processing algorithm only once. In
other words,

𝐺𝑟+1
𝑢 = apply post-processing on 𝐺𝑟

𝑢 \ {𝑒1, · · · , 𝑒𝑚}.
In round 𝑟 +1, node 𝑢 would echo the distrust messages and equivocation proofs to 𝑣 . 𝑣 would remove
the edge 𝑒1, · · · , 𝑒𝑚 from 𝐺𝑟+1

𝑣 and call the post-processing algorithm after each removal. Again, we
have

𝐺𝑟+2
𝑣 ⊆ apply post-processing on 𝐺𝑟+1

𝑣 \ {𝑒1, · · · , 𝑒𝑚}.
Since𝐺𝑟+1

𝑣 ⊆ 𝐺𝑟
𝑢 ,𝐺𝑟

𝑢 \ {𝑒1, · · · , 𝑒𝑚} should also be a subset of𝐺𝑟+1
𝑣 \ {𝑒1, · · · , 𝑒𝑚}. So by Lemma 3.4,

𝐺𝑟+1
𝑢 should be a subgraph of 𝐺𝑟+2

𝑣 . This completes our induction proof. Therefore, the monotonicity
invariant holds in the efficient trust graph mechanism. □

Finally, observe that the trust graph module’s communication complexity (including implicit
echoing of graph messages) is upper bounded by𝑂 (𝑛4) (the𝑂 hides the log𝑛 terms needed to encode
a node’s identifier). This is because there are at most 𝑂 (𝑛2) number of effective distrust messages
and everyone will echo each such message seen to all nodes.
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4 NEW BUILDING BLOCK: THE TRUSTCAST PROTOCOL
Starting from this section, we will be describing the consensus module. In this section, we first
describe an important building block called TrustCast which will play a critical role in our BB
protocol. Before describing the consensus module, we first clarify the order in which the trust module
and consensus module are invoked within a single round:

(1) At the beginning of the round, a node 𝑢 receives all incoming messages.
(2) Next, 𝑢’s trust graph module processes all the graph-messages and updates its local trust graph:
• Process all the freshly seen Distrust messages and remove the corresponding edges from its

trust graph.
• Check for new equivocation evidence: if any equivocation evidence is seen implicating any
𝑣 ∈ [𝑛], remove 𝑣 and all edges incident to 𝑣 from the node’s own trust graph.

Recall also that every time an edge or node is removed from a node’s trust graph, a post-
processing procedure is called to make sure that the trust graph still has 𝑂 (𝑛/ℎ) diameter (see
Section 3.4).

(3) Now, 𝑢’s consensus module processes the incoming consensus messages, and computes a set
of messages denoted 𝑀 to send in this round. The rules for computing the next messages 𝑀 are
specified by our Byzantine Broadcast protocol (Section 5) which calls the TrustCast protocol
(this section) as a building block. The protocol is allowed to query the node’s current trust
graph (i.e., the state after the update in the previous step).

(4) Finally, 𝑢 sends 𝑀 to everyone; additionally, for every fresh message first received in this
round, 𝑢 relays it to everyone (recall the “implicit echoing” assumption).

Henceforth, in our consensus module description, whenever we say “at the beginning of round
𝑟”, we actually mean in round 𝑟 after Step (2), i.e., after the trust graph module makes updates and
yields control to the consensus module.

4.1 The TrustCast Protocol

Motivation and intuition. We introduce a TrustCast protocol that will be used as a building block
in our Byzantine Broadcast protocol. In the TrustCast protocol, a sender 𝑠 ∈ [𝑛] has a message
𝑚 and wants to share 𝑚 with other parties. At the end of the TrustCast protocol, any honest node
either receives a message from 𝑠 or removes 𝑠 from its trust graph. The TrustCast protocol does
not guarantee consistency: if the sender is corrupt, different honest parties may output different
messages from the sender. However, if the sender is indeed honest, then all honest parties will output
the message that the sender sends. Very remotely, the TrustCast protocol resembles the notion of a
“reliable broadcast” [6] or a “gradecast” [17, 26] which is a weakening of Byzantine Broadcast —
many existing works in the consensus literature bootstrap full consensus (or broadcast) from either
reliable broadcast or gradecast. Similarly, we will bootstrap Byzantine Broadcast from TrustCast;
however, we stress that our definition of the TrustCast abstraction is novel, especially in the way the
abstraction is tied to the trust graph.

Abstraction and notations. A TrustCast protocol instance must specify a sender denoted 𝑠 ∈ [𝑛];
furthermore, it must also specify a verification function Vf for receiving nodes to check the validity
of the received message. Therefore, we will use the notation TrustCastVf,𝑠 to specify the verification
function and the sender of a TrustCast instance. Given a node 𝑢 ∈ [𝑛] and a message 𝑚, we also use
the following convention

𝑢.Vf (𝑚) = true in round 𝑟

to mean that the message𝑚 passes the verification check Vf w.r.t. the node 𝑢 in round 𝑟 .
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In our Byzantine Broadcast protocol, whenever a sender 𝑠 calls TrustCastVf,𝑠 to propagate a
message𝑚, the verification function Vf and the message𝑚 must respect the following two conditions
— only if these conditions are satisfied can we guarantee that honest nodes never distrust each other
(see Theorem 4.2).
• Validity at origin. Assuming that the leader 𝑠 is honest, it must be that 𝑠 .Vf (𝑚) = true in round
0, i.e., at the beginning of the TrustCastVf,𝑠 protocol.
• Monotonicity condition. We say that Vf satisfies the monotonicity condition if and only if the

following holds. Let 𝑟 < 𝑡 and suppose that 𝑢, 𝑣 ∈ [𝑛] are honest. Then, if 𝑢.Vf (𝑚) = true in
round 𝑟 , it must hold that 𝑣 .Vf (𝑚) = true in round 𝑡 as well. Note that in the above, 𝑢 and 𝑣

could be the same or different parties.
The first condition guarantees that an honest sender always verifies the message it sends. The second
condition, i.e., the Monotonicity condition, guarantees that if an honest node successfully verifies
a message, then that message would pass verification of all other honest nodes in future rounds.
Together, the two conditions imply that the honest sender’s message would pass verification of all
honest nodes.

TrustCast protocol. We describe the TrustCastVf,𝑠 (𝑚) protocol below where a sender 𝑠 ∈ [𝑛] wants
to propagate a message of the form 𝑚 = (T, 𝑒, payload) whose validity can be ascertained by the
verification function Vf. Recall that by our common assumptions (see Section 3.2), honest nodes
echo every fresh message seen. Moreover, if an honest node 𝑢 ∈ [𝑛] sees the sender’s signatures on
two messages with the same (T, 𝑒) but different payloads, then 𝑢 removes the sender 𝑠 from its trust
graph. For brevity, these implicit assumptions will not be repeated in the protocol description below.

Protocol TrustCastVf,𝑠 (𝑚)
Input: The sender 𝑠 receives an input message 𝑚 and wants to propagate the message 𝑚 to
everyone.

Protocol: In round 0, the sender 𝑠 sends the message𝑚 along with a signature on𝑚 to everyone.

Let 𝑑 = ⌈𝑛/ℎ⌉ + ⌊𝑛/ℎ⌋ − 1, for each round 1 ≤ 𝑟 ≤ 𝑑 , every node 𝑢 ∈ [𝑛] does the following:
(★) If no message 𝑚 signed by 𝑠 has been received such that 𝑢.Vf (𝑚) = true in round 𝑟 , then

for any 𝑣 that is a direct neighbor of 𝑢 in 𝑢’s trust graph: if 𝑣 is at distance less than 𝑟

from the sender 𝑠, call Distrust(𝑣).
Outputs: At the beginning of round 𝑑 + 1, if (1) the sender 𝑠 is still in 𝑢’s trust graph and (2) 𝑢
has received a message𝑚 such that 𝑢.Vf (𝑚) = true, then 𝑢 outputs𝑚.

To better understand the protocol, consider the example where the sender 𝑠 is a direct neighbor of
an honest node 𝑢 in 𝑢’s trust graph. This means that 𝑢 “trusts" 𝑠, i.e., 𝑢 thinks that 𝑠 is an honest node.
Therefore, 𝑢 expects to receive 𝑠’s message in the first round of the TrustCast protocol. If 𝑢 has not
received from 𝑠 in the first round, it knows that 𝑠 must be corrupted. It would thus remove the edge
(𝑢, 𝑠) from 𝑢’s trust graph.

Similarly, if 𝑠 is at distance 𝑟 from 𝑢 in 𝑢’s trust graph, then 𝑢 should expect to receive a valid
message signed by 𝑠 in at most 𝑟 rounds. In case it does not, then 𝑢 can be convinced that all of its
direct neighbors that are at distance 𝑟 − 1 or smaller from 𝑠 in its trust graph must be malicious —
therefore 𝑢 calls Distrust to declare distrust in all such neighbors. Note that the distrust messages
generated in round 𝑟 will be processed at the beginning of round 𝑟 + 1. We now utilize the above
intuition to prove that the TrustCast protocol satisfies the following properties:
• At the end of the TrustCast protocol, any honest node either receives a message from 𝑠 or

removes 𝑠 from its trust graph (Theorem 4.1).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: December 2020.



111:16 Jun Wan, Hanshen Xiao, Elaine Shi, and Srini Devadas

• In the TrustCast protocol, we never remove edges between two honest nodes in any honest
node’s trust graph (Theorem 4.2).

In the rest of the paper, we always use the variable 𝑑 to represent ⌈𝑛/ℎ⌉ + ⌊𝑛/ℎ⌋ − 1.

Theorem 4.1. Let 𝑢 ∈ [𝑛] be an honest node. At the beginning of round 𝑑 + 1, either the sender
𝑠 is removed from 𝑢’s trust graph or 𝑢 must have received a message 𝑚 signed by 𝑠 such that
𝑢.Vf (𝑚) = true in some round 𝑟 .

PROOF. By the definition of the TrustCastVf,𝑠 protocol, if in round 𝑟 , the node 𝑢 has not received
a message𝑚 signed by 𝑠 such that 𝑢.Vf (𝑚) = true in round 𝑟 , then 𝑢 will call Distrust(𝑣) for each
of its neighbors 𝑣 that is within distance 𝑟 − 1 from 𝑠. The Distrust(𝑣) operation generates a distrust
message that will be processed at the beginning of round 𝑟 + 1, causing 𝑢 to remove the edge (𝑢, 𝑣)
from its trust graph. After removing the edge (𝑢, 𝑣), the trust graph module will also perform some
post-processing which may further remove additional edges and nodes. After this procedure, 𝑠 must
be at distance at least 𝑟 + 1 from 𝑢 or removed from 𝑢’s trust graph.

By setting the round number 𝑟 to 𝑑 , we can conclude that at the beginning of round 𝑑 + 1, if 𝑢 has
not received a message𝑚 signed such that 𝑢.Vf (𝑚) = true, then 𝑠 must be either at distance at least
𝑑 + 1 from 𝑢 or removed from 𝑢’s trust graph. Yet, 𝑢’s trust graph must contain a single connected
component containing 𝑢, with diameter at most 𝑑 . So 𝑠 must be removed from 𝑢’s trust graph. □

Theorem 4.2. If the validity at origin and the monotonicity conditions are respected, then an honest
node 𝑢 ∈ [𝑛] will never call Distrust(𝑣) where 𝑣 ∈ [𝑛] is also honest.

PROOF. We can prove by contradiction: suppose that in round 𝑟 ∈ [1, 𝑑], an honest node 𝑢 calls
Distrust(𝑣) where 𝑣 ∈ [𝑛] is also honest. This means that in round 𝑟 , node 𝑢 has not received a
message 𝑚 signed by 𝑠 such that 𝑢.Vf (𝑚) = true in round 𝑟 . Due to the implicit echoing and the
monotonicity condition of Vf, it means that in round 𝑟 − 1, 𝑣 has not received a message 𝑚 signed by
𝑠 such that 𝑣 .Vf (𝑚) = true in round 𝑟 − 1. We may now consider two cases:
• Case 1: suppose 𝑟 − 1 = 0. If the validity at origin condition holds, then 𝑣 cannot be the sender
𝑠. In this case, 𝑢 cannot call Distrust(𝑣) in round 1 because 𝑣 is at distance at least 1 from the
sender 𝑠.
• Case 2: suppose 𝑟 − 1 > 0. By definition of the TrustCastVf,𝑠 protocol, in round 𝑟 − 1, node
𝑣 would send Distrust(𝑤) for any 𝑤 within distance 𝑟 − 2 from 𝑠 in 𝐺𝑟−1

𝑣 . Suppose 𝑣 sends
distrust messages on 𝑤1, · · · ,𝑤𝑙 and we denote the graph 𝐺 ′← 𝐺𝑟−1

𝑣 \ {(𝑣,𝑤1), · · · , (𝑣,𝑤𝑙 )}.
Then, in 𝐺 ′, the distance between 𝑣 and 𝑠 should be at least 𝑟 . Let us now consider node 𝑢 and
𝑢’s trust graph. By trust graph monotonicity, 𝑢’s trust graph at the beginning of round 𝑟 , i.e.,
𝐺𝑟
𝑢 , should be a subset of 𝐺𝑟−1

𝑣 . Further, 𝑢 would receive 𝑣’s distrust messages on 𝑤1, · · · ,𝑤𝑙

in round 𝑟 . Thus,
𝐺𝑟
𝑢 ⊆ 𝐺𝑟−1

𝑣 \ {(𝑣,𝑤1), · · · , (𝑣,𝑤𝑙 )}.
This implies that the distance between 𝑣 and 𝑠 in 𝐺𝑟

𝑢 should be at least 𝑟 , contradicting our
assumption that the distance between 𝑣 and 𝑠 is 𝑟 − 1.

In either case, we have reached a contradiction. □

In this section, we provided a TrustCast protocol with nice properties (Theorem 4.1 and 4.2)
related to the trust graph. In the next section, we will show how to bootstrap full consensus from the
TrustCast protocol.

Remark 2. Later, when TrustCast is invoked by a parent protocol, it could be invoked in an arbitrary
round 𝑟init of the parent protocol; moreover, at invocation, honest nodes’ trust graphs need not be
complete graphs. In this section, our presentation assumed that the initial round is renamed to round
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0 (and all the subsequent rounds are renamed correspondingly). We say that a sender 𝑠 trustcasts
message 𝑚 with verification function Vf if 𝑠 calls TrustCastVf,𝑠 on message 𝑚. If the verification
function Vf is clear in the context, we just say 𝑠 trustcasts a message𝑚.

5 BYZANTINE BROADCAST UNDER STATIC CORRUPTIONS
We first present a Byzantine Broadcast (BB) protocol assuming an ideal leader election oracle and
assuming static corruptions. In subsequent sections, we will remove this idealized leader election
oracle through cryptography.

5.1 Definitions and Notations

Leader election oracle. We use Fleader to denote an ideal leader election oracle. The protocol
proceeds in epochs denoted 𝑒 = 1, 2, . . ., where each epoch consists of 𝑂 (𝑑) number of rounds. We
assume that
• The leader of epoch 1, denoted 𝐿1, is the designated sender of the Byzantine Broadcast.
• At the beginning of each epoch 𝑒 > 1, Fleader chooses a fresh random 𝐿𝑒 from [𝑛] and

announces 𝐿𝑒 to every node. 𝐿𝑒 is now deemed the leader of epoch 𝑒.

Commit evidence. In our Byzantine Broadcast protocol, each node uses the TrustCast protocol
to send messages until it becomes confident as to which bit to commit on. Afterwards, it needs to
convince other nodes to also commit on this bit using what we call a commit evidence. In other words,
once a node generates a valid commit evidence, all other nodes that receive it will commit on the
corresponding bit. At a high level, we want the commit evidence to satisfy the following properties.
• It is impossible for two nodes to generate valid commit evidences on different bits.
• If the leader in this epoch is honest, at least one honest node should be able to generate a

commit evidence on the leader’s proposed bit.
The first property guarantees consistency while the second property guarantees liveness. We first
show what we define to be a commit evidence in our protocol. After we describe our protocol in
Section 5.2, we will prove that this definition satisfies the two properties above.

Fix an epoch 𝑒 and a bit 𝑏 ∈ {0, 1}. We say that a collection E containing signed messages of the
form (vote, 𝑒, 𝑏) is an epoch-𝑒 commit evidence for 𝑏 w.r.t. 𝐺𝑟

𝑢 iff for every 𝑣 ∈ 𝐺𝑟
𝑢 , E contains a

signed message (vote, 𝑒, 𝑏) from 𝑣 . Recall that 𝐺𝑟
𝑢 is 𝑢’s trust graph at the beginning of round 𝑟 (after

processing graph-messages). We also call an epoch-𝑒 commit evidence for 𝑏 w.r.t. 𝐺𝑟
𝑢 “a commit

evidence for (𝑒, 𝑏) w.r.t. 𝐺𝑟
𝑢”.

Fix 𝑢 ∈ [𝑛] and the round 𝑟 . We say that a commit evidence for (𝑒, 𝑏) w.r.t. 𝐺𝑟
𝑢 is fresher than a

commit evidence for (𝑒 ′, 𝑏 ′) w.r.t. 𝐺𝑟
𝑢 iff 𝑒 ′ > 𝑒. Henceforth, we will assume that ⊥ is a valid epoch-0

commit evidence for either bit.

Remark 3. In our protocol description, if we say that “node𝑢 ∈ [𝑛] sees a commit evidence for (𝑒, 𝑏)
in round 𝑟”, this means that at the beginning of the round 𝑟 , after having processed graph-messages,
node 𝑢 has in its view a commit evidence for (𝑒, 𝑏) w.r.t. 𝐺𝑟

𝑢 . If we say “node 𝑢 ∈ [𝑛] sees a commit
evidence for (𝑒, 𝑏)” without declaring the round 𝑟 explicitly, then implicitly 𝑟 is taken to be the
present round.

Lemma 5.1 (Commit evidence monotonicity lemma). Let 𝑢, 𝑣 ∈ [𝑛] be honest nodes. A commit
evidence for (𝑒, 𝑏) w.r.t. 𝐺𝑟

𝑢 must be a commit evidence for (𝑒, 𝑏) w.r.t. 𝐺𝑡
𝑣 for any 𝑡 > 𝑟 . Note that in

the above, 𝑢 and 𝑣 can be the same or different node(s).

PROOF. Due to the trust graph monotonicity lemma, we have 𝐺𝑡
𝑢 ⊆ 𝐺𝑟

𝑣 since 𝑡 > 𝑟 . The lemma
then follows directly. □
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5.2 Protocol
Our protocol proceeds in incrementing epochs where each epoch consists of three phases, called
Propose, Vote, and Commit, respectively. Each phase has 𝑂 (𝑑) (𝑑 = ⌈𝑛/ℎ⌉ + ⌊𝑛/ℎ⌋ − 1) rounds.
Intuitively, each phase aims to achieve the following objectives:
• Propose: the leader uses the TrustCast protocol to share the freshest commit evidence it has

seen.
• Vote: each node uses the TrustCast protocol to relay the leader’s proposal it receives in the

propose phase. At the end of the vote phase, each node checks whether it can construct a
commit evidence.
• Commit: nodes use the TrustCast protocol to share their commit evidence (if any exists).

Besides the three phases, there is also a termination procedure (with the entry point Terminate)
that runs in the background and constantly checks whether the node should terminate. To apply
the TrustCast protocol in each phase, we need to define the corresponding verification functions
such that the monotonicity condition and the validity at origin condition (defined in Section 4.1) are
satisfied. Finally, we need to show that the commit evidence satisfies the properties mentioned in
Section 5.1.

Throughout the paper, we use the notation _ to denote a wildcard field that we do not care about.

For each epoch 𝑒 = 1, 2, . . .:
(1) Propose (𝑂 (𝑑) rounds): The leader of this epoch 𝐿𝑒 performs the following:
• Choose a proposal as follows:

– If 𝑒 = 1, the sender 𝐿1 chooses 𝑃 := (𝑏,⊥) where 𝑏 is its input bit.
– Else if a non-⊥ commit evidence (for some bit) has been seen, let E(𝑒, 𝑏) denote the

freshest such commit evidence and let 𝑃 := (𝑏, E(𝑒, 𝑏)).
– Else, the leader 𝐿𝑒 chooses a random bit 𝑏 and let 𝑃 := (𝑏,⊥).
• Trustcast the proposal (prop, 𝑒, 𝑃) by calling TrustCastVfprop,𝐿𝑒 where the verification

function Vfprop is defined such that 𝑣 .Vfprop (prop, 𝑒, (𝑏, E)) = true in round 𝑟 iff:
(a) E is a valid commit evidence vouching for the bit 𝑏 proposed; and
(b) for every 𝑢 ∈ 𝐺𝑟

𝑣 , E is at least as fresh as any commit evidence trustcast by 𝑢 in the
Commit phase of all previous epochs — recall that ⊥ is treated as a commit evidence
for epoch 0.

Notation: at the end of TrustCastVfprop,𝐿𝑒 , for a node 𝑢 ∈ [𝑛], if 𝐿𝑒 is still in 𝑢’s trust
graph, we say that the unique message (prop, 𝑒, (𝑏, _)) output by TrustCastVfprop,𝐿𝑒 in
𝑢’s view is 𝐿𝑒 ’s proposal, and the corresponding bit 𝑏 is 𝐿𝑒 ’s proposed bit (in 𝑢’s view).

(2) Vote (𝑂 (𝑑) rounds): Every node 𝑢 ∈ [𝑛] performs the following:
• If 𝐿𝑒 is still in 𝑢’s trust graph, then set 𝑏 ′ := 𝑏 where 𝑏 ∈ {0, 1} is 𝐿𝑒 ’s proposed bit; else

set 𝑏 ′ := ⊥.
• Trustcast a vote of the form (vote, 𝑒, 𝑏 ′) by calling TrustCastVfvote,𝑢 , where the veri-

fication function Vfvote is defined such that 𝑣 .Vfvote (vote, 𝑒, 𝑏 ′) = true in round 𝑟 iff
(1) either 𝐿𝑒 has been removed from 𝐺𝑟

𝑣 , or (2) 𝑏 ′ agrees with 𝐿𝑒 ’s proposed bit (in 𝑣’s
view).

(3) Commit (𝑂 (𝑑) rounds): Every node 𝑢 ∈ [𝑛] performs the following:
• If everyone still in 𝑢’s trust graph voted for the same bit 𝑏 ∈ {0, 1} (as defined by

the outputs of the TrustCastVfvote,𝑢 protocols during the Vote phase), then output the
bit 𝑏 and trustcast a commit message (comm, 𝑒, E) by calling TrustCastVfcomm,𝑢 , where
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E contains a signed vote message of the form (vote, 𝑒, _) from everyone in 𝑢’s trust
graph.
• Else, use TrustCastVfcomm,𝑢 to trustcast the message (comm, 𝑒,⊥).
We define the verification function Vfcomm below. The function 𝑣 .Vfcomm (comm, 𝑒, E) =
true in round 𝑟 iff the following holds: if 𝐿𝑒 ∈ 𝐺𝑟

𝑣 , E must be a valid commit evidence for
(𝑒, 𝑏) where 𝑏 is 𝐿𝑒 ’s proposed bit.

Terminate: In every round 𝑟 , every node 𝑢 checks whether there exists (𝑒, 𝑏) such that 𝑢 has
seen, from everyone in𝐺𝑟

𝑢 , a signed message of the form (comm, 𝑒, E) where E is a valid commit
evidence for (𝑒, 𝑏). If so, 𝑢 terminates (recall that by our implicit assumptions, the node 𝑢 will
echo these messages to everyone before terminating).

Intuition for the verification functions: Recall that in Theorem 4.1, we show that at the end of
a TrustCastVf,𝑠 protocol, if the sender 𝑠 remains in an honest node 𝑢’s trust graph, then 𝑢 must
have received a message 𝑚 signed by 𝑠 such that 𝑢.Vf (𝑚) = true. While the three verifications
Vfprop,Vfvote,Vfcomm seem complicated, they are more intuitive to understand when we look at what
Theorem 4.1 implies for each of them.
• TrustCastVfprop,𝐿𝑒 guarantees: at the end of the propose phase in epoch 𝑒, if the leader 𝐿𝑒

remains in an honest node 𝑢’s trust graph, then 𝑢 has received a proposal from 𝐿𝑒 containing
the freshest commit evidence 𝑢 has seen.
• For any node 𝑣 , TrustCastVfvote,𝑣 guarantees: at the end of the vote phase in epoch 𝑒, if 𝑣 remains

in an honest node 𝑢’s trust graph, then either (1) the leader 𝐿𝑒 is no longer in 𝑢’s trust graph or
(2) 𝑢 has received 𝑣’s vote on a bit 𝑏 which matches 𝐿𝑒 ’s proposed bit (in 𝑢’s view). In other
word, if the leader 𝐿𝑒 remains in 𝑢’s trust graph at the end of the vote phase, then 𝑢 must have
received votes on 𝐿𝑒 ’s proposed bit from 𝑣 from every node in 𝑢’s trust graph.
• For any node 𝑣 , TrustCastVfcomm,𝑣 guarantees: at the end of the commit phase in epoch 𝑒, if 𝑣

remains in an honest node 𝑢’s trust graph, then either (1) the leader 𝐿𝑒 is no longer in 𝑢’s trust
graph or (2) 𝑢 has received a valid commit evidence on 𝐿𝑒 ’s proposed bit from 𝑣 . Similarly,
this is equivalent to saying that if the leader 𝐿𝑒 remains in 𝑢’s trust graph at the end of the
commit phase, then 𝑢 must have received a commit evidence on 𝐿𝑒 ’s proposed bit from 𝑣 .

Further, in Theorem 4.2, we show that if the verification functions respect the monotonicity condition
and validity at origin, then honest nodes always remain connected in any honest node’s trust graph.
Assume the three verification functions satisfy those properties, then if the leader 𝐿𝑒 is honest, for
any honest node 𝑢:
• In the propose phase, 𝑢 receives a proposal from 𝐿𝑒 containing the freshest commit evidence.
• In the vote phase, 𝑢 receives consistent votes on 𝐿𝑒 ’s proposed bit from every node in 𝑢’s trust

graph. This allows 𝑢 to construct a commit evidence on 𝐿𝑒 ’s proposed bit.
• In the commit phase, 𝑢 receives a commit evidence on 𝐿𝑒 ’s proposed bit from every node in
𝑢’s trust graph. This allows 𝑢 to terminate.

In the rest of the section, we will generalize the above intuitions into a formal proof for the following
theorem.

Theorem 5.2. The protocol described in this section (with an idealized leader election oracle)
achieves Byzantine Broadcast in expected 𝑂 ((𝑛/ℎ)2) number of rounds.

5.3 Proof of Correctness for the Verification Functions
To apply the properties of the TrustCast protocol, we must show that our verification functions respect
the monotonicity condition and validity at origin. The proof is straightforward. The monotonicity
condition follows from the trust graph’s monotonicity invariant and our implicit echoing assumption.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: December 2020.



111:20 Jun Wan, Hanshen Xiao, Elaine Shi, and Srini Devadas

The validity at origin property can be verified by taking the sender’s messages into the verification
functions and checking if the verification functions output true. For completeness, we list the proof
for each verification function and property as follows.

Remark 4. In Section 4, we proved two theorems (Theorem 4.1 and 4.2) regarding the TrustCast
protocol. Theorem 4.2 requires the verification function to respect the monotonicity condition and
validity at origin. However, Theorem 4.1 does not. It holds for arbitrary verification functions.
Therefore, we can apply Theorem 4.1 to prove that the verification functions respect the monotonicity
condition and validity at origin.

Lemma 5.3. Vfprop satisfies the monotonicity condition.

PROOF. Recall that a propose message (prop, 𝑒, (𝑏, E)) passes the verification of Vfprop w.r.t. node
𝑢 in round 𝑟 iff:

(a) E is a valid commit evidence vouching for the bit 𝑏 proposed; and
(b) for every 𝑣 ∈ 𝐺𝑟

𝑢 , E is at least as fresh as any commit evidence trustcast by 𝑣 in the Commit
phase of all previous epochs.

Let 𝑢, 𝑣 be two honest nodes and let 𝑟 < 𝑡 . Suppose that in round 𝑟 , node 𝑢 verifies the message
(prop, 𝑒, (𝑏, E)). In round 𝑡 , node 𝑣 would check the same condition and we want to show that the
check will succeed.

If condition (a) holds for 𝑢 in round 𝑟 , then it must hold for 𝑣 in round 𝑡 by the commit evidence
monotonicity lemma. We now focus on condition (b) and assume 𝑒 > 1 without loss of generality.
By the trust graph monotonicity lemma, 𝐺𝑡

𝑣 ⊆ 𝐺𝑟
𝑢 . By Theorem 4.1, for any node 𝑤 ∈ 𝐺𝑡

𝑣 , 𝑣 must
have received a commit message (comm, 𝑒 ′, E ′) from 𝑤 in the Commit phase of every epoch 𝑒 ′ < 𝑒.
Moreover, E ′ must agree with what 𝑢 has heard. Otherwise, 𝑢 would have forwarded the equivocating
commit message to 𝑣 (by the implicit echoing assumption) and 𝑣 would have removed the node 𝑤
from its trust graph. By the commit evidence monotonicity lemma, if condition (b) passes for 𝑢 in
round 𝑟 it must pass for 𝑣 in round 𝑡 > 𝑟 . We therefore conclude that the verification must succeed
w.r.t. 𝑣 in round 𝑡 . □

Lemma 5.4. Vfvote satisfies the monotonicity condition.

PROOF. Recall that a vote message (vote, 𝑒, 𝑏 ′) passes the verification of Vfvote w.r.t. node 𝑢 in
round 𝑟 iff: either 𝐿𝑒 has been removed from 𝐺𝑟

𝑢 , or 𝑏 ′ agrees with 𝐿𝑒 ’s proposed bit.
Let 𝑢, 𝑣 be two honest nodes, and let 𝑟 < 𝑡 . If in round 𝑟 , the message (vote, 𝑒, 𝑏 ′) passes the

verification of Vfvote w.r.t. node 𝑢, then it must be that in round 𝑟 , either 𝐿𝑒 ∉ 𝐺𝑟
𝑢 ; or 𝐿𝑒 ∈ 𝐺𝑟

𝑢 and 𝑢

heard 𝐿𝑒 propose the same bit 𝑏 ′ ∈ {0, 1}.
If the former happens, then in round 𝑡 , 𝐿𝑒 ∉ 𝐺𝑡

𝑣 by the trust graph monotonicity lemma and thus in
round 𝑡 , (vote, 𝑒, 𝑏 ′) must pass the verification function Vfvote w.r.t. the node 𝑣 .

If the latter happens, then if in round 𝑡 , 𝐿𝑒 ∉ 𝐺𝑡
𝑣 then obviously the verification Vfvote would pass

w.r.t. 𝑣 in round 𝑡 . Henceforth, we focus on the case when 𝐿𝑒 ∈ 𝐺𝑡
𝑣 . In this case, by Theorem 4.1, 𝑣

must have received a proposal from 𝐿𝑒 on some bit 𝑏 ′′. Further, by the implicit echoing assumption, 𝑢
would relay 𝐿𝑒 ’s proposal on 𝑏 ′ to 𝑣 . This implies that 𝑏 ′ = 𝑏 ′′, since otherwise 𝑣 would have detected
equivocation from 𝐿𝑒 and removed 𝐿𝑒 from its trust graph. Therefore, in round 𝑡 , (vote, 𝑒, 𝑏 ′) must
pass the verification function Vfvote w.r.t. the node 𝑣 . □

Lemma 5.5. Vfcomm satisfies the monotonicity condition.

PROOF. Let 𝑢, 𝑣 be honest nodes, and let 𝑟 < 𝑡 . If (comm, 𝑒, E) passes the verification Vfcomm w.r.t.
𝐺𝑟
𝑢 , then either 𝐿𝑒 ∉ 𝐺𝑟

𝑢 or E is a commit evidence w.r.t. 𝐺𝑟
𝑢 . If the former case, by the trust graph
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monotonicity lemma, 𝐿𝑒 ∉ 𝐺𝑡
𝑣 . If the latter case, then E is a commit evidence w.r.t. 𝐺𝑡

𝑣 due to the
commit evidence monotonicity lemma.

□

We now prove the validity at origin condition for all invocations of TrustCast.

Claim 5.6. If an honest node 𝑢 uses TrustCast to send a (prop, 𝑒, 𝑃) message or a (vote, 𝑒, 𝑏)
message in some round 𝑟 , the message satisfies the corresponding verification function, Vfprop or
Vfvote, respectively, w.r.t. the node 𝑢 in round 𝑟 .

PROOF. For Vfprop, the proof is straightforward by construction. For Vfvote, the proof is also
straightforward by construction, and additionally observing that if 𝐿𝑒 remains in an honest node 𝑢’s
trust graph, it cannot have signed equivocating proposals. □

Claim 5.7. Suppose that in some epoch 𝑒 by the end of the Vote phase, 𝐿𝑒 remains in an honest node
𝑢’s trust graph. Then, by the end of the Vote phase of epoch 𝑒, 𝑢 must have received a vote message
of the form (vote, 𝑒, 𝑏) (where 𝑏 denotes the bit proposed by 𝐿𝑒 ) from every node in 𝑢’s trust graph.

PROOF. By Theorem 4.1, if 𝐿𝑒 remains in 𝑢’s trust graph by the end of the Vote phase, 𝑢 must
have received a proposal (prop, 𝑒, _) from 𝐿𝑒 in the propose phase. Moreover, for any 𝑣 that remains
in 𝑢’s trust graph by the end of the Vote phase, 𝑢 must have received a vote (vote, 𝑒, 𝑏) from 𝑣 .

Now, the claim follows because 𝑢 would check Vfvote on every vote it receives, and Vfvote makes
sure that the vote is only accepted if the vote agrees with 𝐿𝑒 ’s proposal. □

Claim 5.8. If an honest node 𝑢 trustcasts a (comm, 𝑒, E) message in some round 𝑟 , the message
satisfies the verification function Vfcomm w.r.t. the node 𝑢 in round 𝑟 .

PROOF. Follows directly from Claim 5.7. □

We have shown that the three verification functions all respect the monotonicity condition and
validity at origin. Therefore, by Theorem 4.2, the TrustCast protocol never remove edges between
honest nodes in any honest node’s trust graph.

Lemma 5.9. For any two honest nodes 𝑢 and 𝑣 , throughout the entire Byzantine Broadcast protocol,
𝑣 remains one of 𝑢’s neighbors in 𝑢’s trust graph.

5.4 Consistency and Validity Proof
We first prove that our Byzantine Broadcast protocol achieves consistency, i.e., honest nodes always
output the same bit. We divide the proof into two parts. First, we show that within the same epoch,
two honest nodes cannot commit on different bits. Secondly, we show that even across different
epochs, consistency is still guaranteed.

Lemma 5.10 (Consistency within the same epoch). If an honest node 𝑢 ∈ [𝑛] sees an epoch-𝑒
commit evidence for the bit 𝑏 ∈ {0, 1} in some round 𝑟 , and an honest node 𝑣 ∈ [𝑛] sees an epoch-𝑒
commit evidence for the bit 𝑏 ′ ∈ {0, 1} in some round 𝑡 , it must be that 𝑏 = 𝑏 ′.

PROOF. Let E be the epoch-𝑒 commit evidence seen by 𝑢 in round 𝑟 and let E ′ be the epoch-𝑒
commit evidence seen by 𝑣 in round 𝑡 . Due to the honest clique invariant of the trust graph, E
must contain signatures on (vote, 𝑒, 𝑏) from every honest node, and E ′ must contain signatures on
(vote, 𝑒, 𝑏) from every honest node. However, each honest node will only vote for a single bit in any
given epoch 𝑒. It holds that 𝑏 = 𝑏 ′. □

Lemma 5.11 (Consistency across epochs). If an honest node 𝑢 ∈ [𝑛] outputs the bit 𝑏 in some epoch
𝑒, then in every epoch 𝑒 ′ > 𝑒, no honest node 𝑣 ∈ [𝑛] can ever see a commit evidence for (𝑒 ′, 1 − 𝑏).
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PROOF. We will use induction to show that honest nodes will never receive commit evidence for
the bit 1 −𝑏 in any epoch after 𝑒. By the protocol definition, for 𝑢 to output 𝑏 in epoch 𝑒, it must have
seen a commit evidence for (𝑒, 𝑏) at the beginning of the Commit phase in epoch 𝑒. We have already
shown in Lemma 5.10 that any two nodes cannot commit on different bits within the same epoch.
Therefore, there cannot exist any commit evidence for 1 − 𝑏 in epoch 𝑒. Thus, we have shown the
base case of our induction.

Suppose no honest node has seen any commit evidence for 1 − 𝑏 between epoch 𝑒 and 𝑒 ′ (𝑒 ′ ≥ 𝑒),
we will show that no commit evidence will be seen for 1−𝑏 in epoch 𝑒 ′+1 as well. Note that in epoch
𝑒, a node 𝑢 uses TrustCastVfcomm,𝑢 to trustcast its commit evidence for (𝑒, 𝑏), and all honest nodes
will receive it by the end of epoch 𝑒. Since no commit evidence for 1 − 𝑏 has been seen afterwards,
for any honest node, the freshest commit evidence it has seen is on 𝑏. Now, during epoch 𝑒 ′ + 1, every
honest node will reject 𝐿𝑒′+1’s proposal (where reject means not passing the Vfprop function) unless it
is for the same bit 𝑏; and if they do reject 𝐿𝑒′+1’s proposal, they will vote on ⊥. Therefore, in epoch
𝑒 ′ + 1, no honest node will vote for 1 − 𝑏, and no honest node will ever see a commit evidence for
(𝑒 ′ + 1, 1 − 𝑏). This completes our induction proof. □

Theorem 5.12 (Consistency). If honest nodes 𝑢 and 𝑣 output 𝑏 and 𝑏 ′, respectively, it must be that
𝑏 = 𝑏 ′.

PROOF. For an honest node to output 𝑏 in epoch 𝑒, it must observe a commit evidence for (𝑒, 𝑏) in
epoch 𝑒. Consider the earliest epoch 𝑒 in which an honest node, say, 𝑢 ′, outputs a bit 𝑏. By definition,
every other honest node will output in epoch 𝑒 or greater. By Lemma 5.10, no honest node will output
1 − 𝑏 in epoch 𝑒. By Lemma 5.11, no honest node will output 1 − 𝑏 in epoch 𝑒 ′ > 𝑒. □

Next, we show that our protocol achieves validity.

Theorem 5.13 (Validity). If the designated sender 𝐿1 is honest, then everyone will output the sender’s
input bit.

PROOF. By Claim 5.7 and the honest clique invariant, for any honest node𝑢, any node that remains
in its trust graph by the end of the Vote phase of epoch 1 must have trustcast to 𝑢 a vote of the form
(vote, 𝑒 = 1, 𝑏) where 𝑏 must agree with 𝐿1’s proposed bit. Thus, 𝑢 will output 𝑏 in epoch 1. □

Theorem 5.12 and 5.13 together imply that our protocol achieves Byzantine Broadcast. It remains
to show that our protocol terminates and has expected constant round complexity.

Remark 5 (Instantiating the ideal signature with a real signature). In the above proofs, we showed
that if the signature is ideal, consistency and validity hold with probability 1. When we instantiate the
ideal signature with a real signature, we can conclude that consistency and validity hold with all but
negligible probability. To see this, it helps to view our above proof as follows. Consider the bad event
that the adversary manages to forge a signature on behalf of an honest node during the execution of
the protocol. Our above proof shows that if this bad event does not happen, consistency and validity
must be respected. Now, if the adversary can break consistency or validity with non-negligible
probability, it must be that the bad event happens with non-negligible probability. In other words,
during the protocol execution, the adversary must succeed in forging a signature on behalf of an
honest node with non-negligible probability. It is not hard to leverage this adversary to construct a
reduction that breaks the security of the signature scheme. To clarify common misconceptions, we
stress the following points:
• The standard security definition of digital signatures implies that even when the (polynomially

bounded) adversary can adaptively corrupt nodes, it cannot forge honest nodes’ signatures
except with negligible probability.
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• Although we call it the ideal signature model, our proofs do not rely on modeling the signature
as an ideal functionality using a simulation paradigm or the universally composable framework.
As mentioned above, our proofs show that as long as the bad event of signature forgery does
not happen, consistency and validity are guaranteed.
• The inductive nature of the proof of Lemma 5.11 does not matter to the above arguments.

5.5 Round Complexity Analysis
Finally, we show that our protocol achieves liveness, i.e., all honest nodes eventually terminate.
Moreover, we analyze the round complexity and communication complexity of the protocol, showing
that the protocol terminates in expected 𝑂 ((𝑛/ℎ)2) rounds and has 𝑂 (𝑛4) communication complexity.

Claim 5.14. If some honest node terminates in round 𝑟 , then all honest nodes will have terminated
by the end of round 𝑟 + 1.

PROOF. If an honest node terminates in round 𝑟 , it must have received consistent commit evidence
from every node in its trust graph. By the implicit echoing assumption, it would forward those
commit evidences to all other honest nodes before round 𝑟 + 1. By the trust graph monotonicity
invariant and the commit evidence monotonicity lemma (Lemma 5.1), all other honest nodes would
gather enough commit evidence in round 𝑟 + 1 and terminate as well. □

The following theorem says that liveness will ensue as soon as there is an honest leader in some
epoch (if not earlier). Now if the leader election is random, this will happen in expected 𝑂 (𝑛/ℎ)
number of epochs. Since each epoch is 𝑂 (𝑑) = 𝑂 (𝑛/ℎ) rounds, every honest node outputs some bit
in expected 𝑂 ((𝑛/ℎ)2) rounds.

Theorem 5.15 (Liveness). If in some epoch 𝑒, the leader 𝐿𝑒 is honest, then one round after this
epoch, every honest node would have terminated.

PROOF. Without loss of generality, we may assume that no node has terminated yet by the end
of epoch 𝑒, since otherwise by Claim 5.14, the theorem immediately holds. If no honest node has
terminated by the end of epoch 𝑒, then we may assume that everyone honest will participate in all the
TrustCast protocols till the end of epoch 𝑒 and thus we can rely on the properties of TrustCast in
our reasoning.

Let 𝑢 be an honest node. By Claim 5.7 and the honest clique invariant, at the end of the Vote
phase of epoch 𝑒, 𝑢 must have received a vote message on 𝐿𝑒 ’s proposed bit from every node in 𝑢’s
trust graph. Further, by applying Theorem 4.1 to TrustCastVfcomm,_, we know that by the end of the
Commit phase, 𝑢 must have received a commit evidence on 𝐿𝑒 ’s proposed bit from every node in 𝑢’s
trust graph. Thus, all honest nodes will have terminated by the end of epoch 𝑒. □

In Theorem 5.15, we proved that as soon as some epoch has an honest leader, all honest nodes will
terminate at most 1 round after the epoch’s end. Each epoch has 𝑂 (𝑑) = 𝑂 (𝑛/ℎ) number of rounds,
and with random leader election, in expectation we need 𝑂 (𝑛/ℎ) number of rounds till we encounter
an honest leader. Thus, the expected round complexity is 𝑂 ((𝑛/ℎ)2). We can also show that with
probability 1 − 𝛿 , the round complexity is bounded by log( 1

𝛿
) · 𝑛

ℎ
/log( 1

1−ℎ/𝑛 ).
The total number of consensus messages generated by honest nodes in each epoch (not counting

implicit echoing) is at most 𝑂 (𝑛). Each message is at most 𝑂 (𝑛) in size (the 𝑂 hides the log𝑛
terms needed to encode a node’s identifier). Each such consensus message will be delivered to
𝑂 (𝑛) nodes and each node will echo every fresh message to everyone. Therefore, the total amount
of communication pertaining to the consensus module (including implicit echoing of consensus
messages) is 𝑂 (𝑛4) if everyone behaved honestly. On top of this, honest nodes also need to echo
messages sent by corrupt nodes and there can be (unbounded) polynomially many such messages.
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However, we can easily make the following optimization: for consensus messages with the same
type and same epoch, every honest node echoes at most two messages originating from the same
node (note that this is sufficient to form an equivocation evidence to implicate the sender). With this
optimization, the per-epoch total communication for sending consensus messages is upper bounded
by 𝑂 (𝑛4). As mentioned earlier in Section 3, the total amount of communication for the trust graph
module is also upper bounded by𝑂 (𝑛4). Thus, the total communication is upper bounded by𝑂 (𝑛4 ·𝐸)
where 𝐸 denotes the number of epochs till termination. Note that in expectation 𝐸 = 𝑛/ℎ; moreover,
with probability 1 − 𝛿 , 𝐸 is upper bounded by log( 1

𝛿
)/log( 1

1−ℎ/𝑛 ).

Theorem 5.2. The protocol described in this section (with an idealized leader election oracle)
achieves Byzantine Broadcast in expected 𝑂 ((𝑛/ℎ)2) number of rounds.

PROOF. Follows directly from Theorems 5.12, 5.13 and 5.15. □

5.6 Instantiating Leader Election under a Static Adversary
So far we assumed an ideal leader election oracle. We can instantiate this leader election oracle using
known cryptographic tools and obtain a protocol secure under the static corruption model.

We first explain a simple approach for instantiating the leader election oracle assuming that
corruption decisions are made statically, i.e., before the protocol starts.

The approach is the following. First, the adversary decides who to corrupt. Next, a common
random string crs ∈ {0, 1}𝜆 is chosen where 𝜆 denotes a security parameter5. Then, the protocol
execution begins. In each epoch 𝑒 > 1, the leader 𝐿𝑒 is computed as follows where PRF denotes a
pseudo-random function:

For 𝑒 > 1 : 𝐿𝑒 := (PRFcrs (𝑒) mod 𝑛) + 1.

Note that in the above, it may seem counter-intuitive that the PRF’s secret key crs is publicly
known. This is because a static adversary selects the corrupted set before crs is generated. Therefore,
the adversary cannot adaptively corrupt the elected leader even if crs is publicly known. The random
variable we care about bounding is the number of rounds till we encounter an honest leader. We want
to show that the random variables in the ideal and real protocols are computationally indistinguishable.

Henceforth, we use Πideal to denote the protocol in Section 5, and we use Πreal to denote the same
protocol, but instantiating the leader election as above. Let 𝑅ideal be the random variable denoting the
number of rounds till we have an honest leader in an execution of Πideal, and let 𝑅real be the random
variable denoting the number of rounds till we have an honest leader in an execution of Πreal.

Lemma 5.16. 𝑅ideal and 𝑅real are computationally indistinguishable.

PROOF. Πideal is essentially the same as Πreal but where the PRF is replaced with a random function
— notice also that under the static corruption model, publicly announcing the leader schedule after
the adversary determines which nodes to corrupt does not affect the random variable 𝑅ideal.

Suppose that 𝑅ideal and 𝑅real are computationally distinguishable. This means that there is an
efficient distinguisher D which, knowing the identities of the corrupt nodes and the sequence of
leaders chosen, can tell whether Πideal or Πreal is executing. Now, we can construct an efficient
reduction R that can distinguish with non-negligible probability whether the oracle it is interacting
with is a PRF or a random function. To do so, the reduction can interact with the adversary to learn
which nodes it wants to corrupt. Then, it queries the oracle to obtain the sequence of leaders. It gives
the identities of corrupt nodes and the sequence of leaders to D and outputs the same bit as D. This

5If we only focus on static security, it is also fine to encode the leaders of every epoch directly in the crs. We use a PRF here
only for a smoother transition to our adaptively secure scheme.
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contradicts PRF’s definition that a PRF is indistinguishable from a random function. Therefore, 𝑅ideal
and 𝑅real are computationally indistinguishable. □

Therefore, we have the following theorem for the above real-world protocol Πreal.

Theorem 5.17. Assume the static corruption model and that the PRF adopted is secure. Then,
the aforementioned Πreal protocol achieves Byzantine Broadcast in expected 𝑂 ((𝑛/ℎ)2) number of
rounds.

PROOF. Follows directly from Theorem 5.2 and Lemma 5.16. □

6 ACHIEVING SECURITY UNDER AN ADAPTIVE ADVERSARY
In this section, we show how to change the protocol in Section 5 such that it achieves security even
under an adaptive adversary. The adaptive adversary can corrupt arbitrary nodes during any round of
the protocol, as long as the total number of nodes it corrupts does not exceed a given upper bound 𝑓 .
However, when the adaptive adversary corrupts a node 𝑢 in round 𝑟 , it cannot erase the message 𝑢
has already sent in round 𝑟 . Such a model is also referred to as weakly adaptive in earlier works.

Let us first see why the protocol in Section 5 fails to work under an adaptive adversary. Suppose
an honest leader proposes a bit 𝑏 ∈ {0, 1} to all other nodes in the propose phase. Upon receiving the
proposal, the adaptive adversary will learn the leader’s identity. It can then corrupt the leader and
generate an equivocating proposal, i.e., a proposal on 1 − 𝑏. By sending equivocating proposals to
all other nodes, it forces all nodes to remove the leader from their trust graphs. Thus, no one will
commit / terminate during this epoch. By performing the above action repeatedly in each epoch, the
adaptive adversary can make the protocol lasts for at least 𝑓 epochs. To defend against an adaptive
adversary, we make two fundamental changes to the protocol:

• Postpone leader election: In the propose phase, instead of selecting a leader and let the leader
propose, every node pretends to be the leader and sends its own proposal using TrustCast.
After all nodes have trustcast their proposals, we elect a leader using verifiable random function
(definition provided in Section 6.1). Nodes will then focus on the leader’s proposal and ignore
proposals from all other nodes. Note that it is possible for honest nodes to have inconsistent
view on who the leader is. However, we will show that this does not affect the correctness of
our protocol.
• Make proposals unforgeable even after corrupting the leader: If an node 𝑢 proposes a bit
𝑏 ∈ {0, 1} and 𝑢 remains uncorrupted throughout the propose phase, then the adversary cannot
forge a proposal on 1−𝑏 from 𝑢 even if the adversary immediately corrupts 𝑢 after the propose
phase.

On the high level, we want an honest leader to fulfill its duty before its identity is known to the
adversary. By postponing leader election, the adversary cannot learn which node would be elected
until all nodes have trustcast their proposals. We also need to guarantee that as long as the leader
performs honestly before revealing its identity (the leader election), then all honest nodes will commit
on the leader’s proposal – despite potential malicious behavior from the leader after its identity is
revealed. To do this, we need to make sure that the adversary cannot forge equivocating proposals
from the leader after the propose phase. This is achieved by introducing a new building block called
AckCast, which is a simple extension of the previous TrustCast. In AckCast, a sender 𝑠 ∈ [𝑛] first
trustcasts a message to everyone. Upon receiving the message from the sender, a node trustcasts an
acknowledges claiming to receive the message, which we call an ACK message. At the end of the
AckCast protocol, we guarantee that for any honest node 𝑢, either

• 𝑠 is no longer in 𝑢’s trust graph, or
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• 𝑢 has received a unique and valid message from 𝑠; moreover, 𝑢 has heard an ACK for the same
message from every node in 𝑢’s trust graph.

During the propose phase, we require that each node proposes using AckCast instead of TrustCast.
This forces a valid proposal to contain an ACK message from every node. In this way, although the
adversary may immediately corrupt the leader after the leader election, it is too late for the now-
corrupt leader to insert a new equivocating proposal, since there is no time for this new equivocating
proposal to acquire ACKs from everyone.

In this section, we first introduce verifiable random functions (VRF) in Section 6.1. This is a
preliminary section which reviews the definition of VRF [29]. We will apply VRF as a cryptographic
primitive in the leader election. In Section 6.2, we introduce our AckCast protocol. Finally, in Section
6.3, we introduce our Byzantine Broadcast protocol under adaptive adversary. It is followed by proof
of correctness that is structured similar to Section 5.

6.1 Preliminary: Verifiable Random Functions
In this section, we review the definition and notations of verifiable random functions (VRF) in [29].
A verifiable random function includes the following (possibly randomized) algorithms:
• (pp, {pk𝑢, sk𝑢}𝑢∈[𝑛]) ← Gen(1𝜆): takes in a security parameter 𝜆 and generates public parameters
pp, and a public and secret key pair (pk𝑢, sk𝑢) for each node 𝑢 ∈ [𝑛]; each sk𝑢 is of the form
sk𝑢 := (𝑠𝑢, 𝜌𝑢) where 𝑠𝑢 is said to be the evaluation key and 𝜌𝑢 is said to be the proof key for 𝑢.
• (𝑦, 𝜋) ← Eval(pp, sk𝑢, 𝑥): we shall assume that Eval := (𝐸, 𝑃) has two sub-routines 𝐸 and 𝑃

where Eval.𝐸 is deterministic and Eval.𝑃 is possibly randomized. Given the public parameters
pp, the secret key sk𝑢 = (𝑠𝑢, 𝜌𝑢), and input 𝑥 ∈ {0, 1} |𝑥 | , compute 𝑦 := Eval.𝐸 (pp, 𝑠𝑢, 𝑥) and
𝜋 := Eval.𝑃 (pp, 𝑠𝑢, 𝜌𝑢, 𝑥), and output (𝑦, 𝜋).
• {0, 1} ← Ver(pp, pk𝑢, 𝑥,𝑦, 𝜋): receives the public parameters pp, a public key pk𝑢 , an input
𝑥 , a purported outcome 𝑦, and a proof 𝜋 , outputs either 0 indicating rejection or 1 indicating
acceptance.

For the VRF scheme to satisfy correctness, we require that for any 𝑣 ∈ [𝑛] and any input 𝑥 ,
the following holds with probability 1: let (pp, {pk𝑢, sk𝑢}𝑢∈[𝑛]) ← Gen(1𝜆), and let (𝑦, 𝜋) ←
Eval(pp, sk𝑣, 𝑥), then it must be that Ver(pp, pk𝑣, 𝑥,𝑦, 𝜋) = 1.

6.1.1 Pseudorandomness under Selective Opening. To define pseudorandomness under
selective opening, we shall consider two games. The first game is intended to capture that the
evaluation outcome, i.e., the 𝑦 term output by Eval, is pseudorandom even when A can selectively
corrupt nodes and open the first component of the corrupted nodes’ secret keys. The second game
captures the notion that the proof 𝜋 does not reveal anything additional even under an adaptive
adversary.

First game: pseudorandomness of the evaluation outcome. We consider a selective opening
adversary A that interacts with a challenger denoted C in the following experiment ExptA

𝑏
(1𝜆)

indexed by the bit 𝑏 ∈ {0, 1}.

ExptA
𝑏
(1𝜆):

• First, the challenger C runs the Gen(1𝜆) algorithm and remembers the secret key components
(𝑠1, . . . , 𝑠𝑛) for later use. Note that C need not give public parameters to A.
• Next, the adversary A can adaptively make queries of the following forms:

– Evaluate: A submits a query (𝑢, 𝑥), now C computes 𝑦 ← Eval.𝐸 (pp, 𝑠𝑢, 𝑥) and gives 𝑦
to A.
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– Corrupt: A specifies an index 𝑢 ∈ [𝑛] to corrupt, and C parses sk𝑢 := (𝑠𝑢, 𝜌𝑢) and
reveals 𝑠𝑢 to A.

– Challenge: A specifies an index 𝑢∗ ∈ [𝑛] and an input 𝑥 . If 𝑏 = 0, the challenger returns
a completely random string of appropriate length. If 𝑏 = 1, the challenger computes
𝑦 ← Eval.𝐸 (pp, 𝑠𝑢∗ , 𝑥) and returns 𝑦 to the adversary.

We say that A is compliant iff with probability 1, every challenge tuple (𝑢∗, 𝑥) it submits satisfies
the following: 1)A does not make a corruption query on 𝑢∗ throughout the game; and 2)A does not
make any evaluation query on the tuple (𝑢∗, 𝑥).

If no efficient and compliant adversary can effectively distinguish ExptA0 (1𝜆) and ExptA1 (1𝜆), then
we can be sure that the evaluation outcome of the VRF is pseudorandom even with an adaptive
adversary.

Second game: zero-knowledge of the proofs. We also need to make sure that the proof part is
zero-knowledge even w.r.t. an adaptive adversary. Therefore, we define another game below where
the adversary A tries to distinguish whether it is playing in the real-world experiment or in the
ideal-world experiment:

• Real-world experiment Real: In the real-world experiment, the challenger runs the Gen(1𝜆)
algorithm and gives the public parameters pp and all public keys pk1, . . . , pk𝑛 to A, but keeps
sk1, . . . , sk𝑛 to itself. Next, A can adaptively make the following queries:

– Evaluate:A submits a query (𝑢, 𝑥), C computes (𝑦, 𝜋) ← Eval(pp, sk𝑢, 𝑥) and gives (𝑦, 𝜋)
to A.

– Corrupt:A specifies an index 𝑢 ∈ [𝑛] to corrupt. C reveals not only sk𝑢 toA, but also all
the randomness used in the Eval algorithm for any earlier Evaluate query pertaining to 𝑢.

• Ideal-world experiment IdealS0,S1,S2,S3 : First, the challenger C runs a simulated setup algorithm

(𝑠1, . . . , 𝑠𝑛) ← S0 (1𝜆);
(pp, pk1, . . . , pk𝑛, 𝜏) ← S1 (1𝜆);

it gives the public parameters pp and all public keys pk1, . . . , pk𝑛 to A, but keeps the trapdoor
𝜏 to itself.
Next, A can adaptively make the following queries:

– Evaluate:A submits a query (𝑢, 𝑥), and now the simulator computes 𝑦 := Eval.𝐸 (pp, 𝑠𝑢, 𝑥),
and 𝜋 ← S2 (𝜏, pk𝑢, 𝑥,𝑦) and gives 𝑦, 𝜋 to A.

– Corrupt: A specifies an index 𝑢 ∈ [𝑛] to corrupt. Let I denote the indices of the earlier
Evaluate queries that correspond to the node 𝑢 ∈ [𝑛]; and moreover, for 𝑖 ∈ I, let the 𝑖-th
query be of the form (𝑢, 𝑥𝑖 ) and the result be of the form (𝑦𝑖 , 𝜋𝑖 ).
The challenger C calls (𝜌𝑢, {𝜓𝑖 }𝑖∈I) ← S3 (𝜏, pk𝑢, 𝑠𝑢, {𝑥𝑖 , 𝜋𝑖 }𝑖∈I), and returns the secret
key sk𝑢 := (𝑠𝑢, 𝜌𝑢) as well as the randomness used in earlier queries {𝜓𝑖 }𝑖∈I to A.

Definition 6.1 (Pseudorandomness under selective opening). We say that a VRF scheme satisfies
pseudorandomness under selective opening iff

• for any compliant non-uniform p.p.t . adversary A, its views in ExptA0 (1𝜆) and ExptA1 (1𝜆) are
computationally indistinguishable.
• there exists p.p.t . simulators (S0,S1,S2,S3) such that the outcome of S0 is identically dis-

tributed as the (𝑠0, . . . , 𝑠𝑛) components generated by the real-world Gen(1𝜆) algorithm, and
moreover, A’s view in the above Real and IdealS0,S1,S2,S3 are computationally indistinguish-
able.
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6.1.2 Unforgeability. We say that a VRF scheme satisfies unforgeability, if there exists a negligible
function negl(·) such that no non-uniform p.p.t . adversary A can win the following game with more
than negl(𝜆) probability:
• First, the challenger C runs the Gen(1𝜆) algorithm and gives the public parameters pp and all

public keys pk1, . . . , pk𝑛 to A, but keeps sk1, . . . , sk𝑛 to itself.
• The adversary A can adaptively make the following queries:

– Evaluate: A submits a query (𝑢, 𝑥), now C computes (𝑦, 𝜋) ← Eval(pp, sk𝑢, 𝑥) and gives
(𝑦, 𝜋) to A.

– Corrupt:A specifies an index 𝑢 ∈ [𝑛] and C reveals sk𝑢 toA as well as random coins used
in earlier Evaluate queries pertaining to 𝑢.

• Finally,A outputs a tuple (𝑢, 𝑥,𝑦, 𝜋). It is said to win the game if either Ver(pp, pk𝑢, 𝑥,𝑦, 𝜋) = 1,
but 𝑦 ≠ 𝑦 ′ where (𝑦 ′, _) := Eval(pp, sk𝑢, 𝑥); or if 𝑢 has not been corrupted before and A has
not made any Evaluate query of the form (𝑢, 𝑥).

In other words, we want that except with negligible probability, A cannot forge the VRF outcome
and proof on behalf of any honest node on a point that has not been queried; furthermore, even for
corrupted nodes, A cannot forge a VRF outcome and proof such that the evaluation outcome is
different from the honest evaluation outcome.

Abraham et al. [1] proved the following theorem where the bilinear group assumptions needed are
the same as those adopted by Groth et al. [24].

Theorem 6.2 (Existence of adaptively secure VRFs [1]). Assuming standard bilinear group as-
sumptions and a trusted setup, we can construct a VRF scheme satisfying pseudorandomness under
selective opening and unforgeability.

6.1.3 VRF Technical Lemma. Abraham et al. [1] showed the following useful theorem regarding
VRFs that satisfy pseudorandomness under selective opening attacks. To describe the theorem, we
need to first describe the following experiments:
• Ideal experiment. In the ideal experiment, an adversary A interacts with an idealized oracle
F . The execution continues in epochs. At the beginning of each epoch 𝑒, F picks a random
answer for every query of the form (𝑢, 𝑒) for 𝑢 ∈ [𝑛], and returns all 𝑛 answers toA. WhenA
calls F .Corrupt(𝑢), F records that 𝑢 has been corrupted.
• Real experiment. In the real experiment, an adversary A interacts with an oracle F ′. First,
F ′ calls VRF.Gen(1𝜆) and gives the resulting pp, pk1, . . . , pk𝑛 to A, but keeps sk1, . . . , sk𝑛 to
itself.
At the beginning of every epoch 𝑒, F ′ computes for every 𝑢 ∈ [𝑛] a tuple (𝑦𝑢, 𝜋𝑢) :=
VRF.Eval(pp, sk𝑢, 𝑒) and returns (𝑦𝑢, 𝜋𝑢) to A. Whenever A calls F ′.Corrupt(𝑢), F ′ records
that 𝑢 has been corrupted but also discloses sk𝑢 to A as well as all the randomness used by
Eval earlier pertaining to 𝑢.

Now, let bad be any polynomial-time computable function defined over the following variables:
(1) the sequence of answers (not including the proof part for the real experiment) to all (𝑢, 𝑒)

queries sorted by lexicographical ordering of the queries, and
(2) the nodes corrupted by A and the epoch in which they become corrupt.

Lemma 6.3 (Technical lemma regarding VRF [1]). Suppose that the VRF satisfies pseudorandomness
under selective opening. Then, if there exists a non-uniform p.p.t . adversary A that can cause the
bad event bad to take place in the real experiment with probability 𝑝, there must exist a non-uniform
p.p.t . adversary A ′ that can cause bad to happen in the ideal experiment with probability at least
𝑝 − negl(𝜆).
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6.2 New Building Block: AckCast Protocol
We describe an additional helpful building block called AckCast that is a simple extension of
the previous TrustCast. In AckCast, a sender 𝑠 ∈ [𝑛] trustcasts a message and then every node
acknowledges (ACK) the message (also using TrustCast). If a node receives ACKs on different
messages, which must contain equivocating signatures from the sender, then the sender must be
corrupted and can be removed from the trust graph. At the end of the AckCast protocol, we guarantee
that for any honest node 𝑢, either
• 𝑠 is no longer in 𝑢’s trust graph, or
• 𝑢 has received a unique and valid message from 𝑠; moreover, 𝑢 has heard an ACK for the same

message from every node in 𝑢’s trust graph.

AckCastVf,𝑠 :
(1) The sender 𝑠 ∈ [𝑛] trustcasts the message𝑚 with TrustCastVf,𝑠 ;
(2) For every honest node 𝑢 ∈ [𝑛],
• if the previous TrustCastVf,𝑠 outputs a message𝑚 signed by 𝑠 such that 𝑢.Vf (𝑚) = true,

then set𝑚′← (ack, 𝑠,𝑚).
• else, set𝑚′← (ack, 𝑠,⊥).
𝑢 trustcasts the message 𝑚′ with TrustCastVf

′,𝑢 , where 𝑣 .Vf ′(ack, 𝑠,𝑚) = true in round 𝑟

iff
(a) either 𝑠 is no longer in 𝐺𝑟

𝑣 or𝑚 must agree with what 𝑠 has trustcast (in 𝑣’s view); and
(b) either𝑚 = ⊥ or 𝑣 .Vf (𝑚) = true in round 𝑟 .

Fact 6.4. If Vf satisfies the monotonicity condition, then Vf ′ also satisfies the monotonicity condition.

PROOF. Recall that for any node 𝑢, the verification function 𝑢.Vf ′(ack, 𝑠,𝑚) = true in round 𝑟 iff
(a) either 𝑠 is no longer in 𝐺𝑟

𝑢 or𝑚 must agree with what 𝑠 has trustcast (in 𝑢’s view); and
(b) either𝑚 = ⊥ or 𝑢.Vf (𝑚) = true in round 𝑟 .

Let 𝑢, 𝑣 be honest nodes, and let 𝑟 < 𝑡 . Suppose 𝑢.Vf ′(ack, 𝑠,𝑚) = true in round 𝑟 , we want to show
that 𝑣 .Vf ′(ack, 𝑠,𝑚) = true in round 𝑡 . Let us consider condition (a) and (b) separately. Condition (b)
holds for 𝑣 because the monotonicity of Vf. We now focus on condition (a).

Since 𝑢.Vf ′(ack, 𝑠,𝑚) = true in round 𝑟 , it must be that in round 𝑟 , either 𝑠 ∉ 𝐺𝑟
𝑢 , or 𝑠 ∈ 𝐺𝑟

𝑢 and
the message 𝑚 is what 𝑢 heard 𝑠 trustcast. If the former holds, then in round 𝑡 , we have 𝑠 ∉ 𝐺𝑡

𝑣 by the
trust graph’s monotonicity invariant, and thus condition (a) holds for 𝑣 in round 𝑡 . If the latter holds,
then if in round 𝑡 , we have 𝑠 ∉ 𝐺𝑡

𝑣 , condition (a) holds for 𝑣 in round 𝑡 . We thus focus on the case
when 𝑠 ∈ 𝐺𝑡

𝑣 . In this case, it must be that 𝑣 heard 𝑠 trustcast the same message, since otherwise 𝑢
would have sent to 𝑣 the equivocating message trustcast by 𝑠, and 𝑣 would have removed 𝑠 from its
trust graph. This implies that condition (a) holds for 𝑣 in round 𝑡 . Thus, we conclude that in round 𝑡 ,
(ack, 𝑠,𝑚) must pass the verification check of Vf ′ w.r.t. the node 𝑣 . □

Fact 6.5. Vf ′ satisfies the validity at origin property, i.e., when an honest node𝑢 trustcasts (ack, 𝑠,𝑚)
with TrustCastVf

′,𝑢 in some round 𝑟 during AckCastVf,𝑠 , it must be that 𝑢.Vf ′(ack, 𝑠,𝑚) = true in
round 𝑟 .

PROOF. By construction and by property of the first TrustCastVf,𝑠 . □

Lemma 6.6. Assume that Vf satisfies the monotonicity condition and that the message 𝑚 input to 𝑠

satisfies the validity at origin condition. Then, at the end of the AckCast protocol, for any honest
node 𝑢, either
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(1) 𝑠 is no longer in 𝑢’s trust graph;
(2) 𝑢 has heard 𝑠 trustcast a unique message𝑚 such that 𝑢.Vf (𝑚) = true at the end of the protocol;

moreover, 𝑢 must have received an ACK of the form (ack, 𝑠,𝑚) from every node in its trust
graph;

PROOF. Since Vf satisfies the monotonicity condition and the validity at origin condition, by
Fact 6.4 and Fact 6.5, Vf ′ also satisfies the monotonicity condition and the validity at origin condition.
Thus, by Theorem 4.1, for any two honest nodes 𝑢 and 𝑣 , 𝑢 must have received a valid ACK from
𝑣 that passes Vf ′ in TrustCastVf

′,𝑣 . In other words, by the end of the AckCast protocol, any honest
node 𝑢 must have received valid ACKs that passes Vf ′ from all nodes in its trust graph.

Now, we want to show that the ACKs 𝑢 receives match what 𝑠 trustcasts (in 𝑢’s view). If 𝑠 is
still in 𝑢’s trust graph by the end of AckCast, again by Theorem 4.1, 𝑢 must have received a valid
message from 𝑠. By the definition of Vf ′, each ACK message received by 𝑢 must agree with what 𝑠
has trustcast. This completes our proof. □

6.3 Protocol

Strawman attempt. We first discuss a strawman attempt using a Verifiable Random Function
(VRF) that achieves security against an adaptive adversary. In every epoch, every node 𝑢 computes
(𝑦𝑢, 𝜋𝑢) := VRF(pp, sk𝑢, 𝑒). Now, 𝑦𝑢 is said to be 𝑢’s charisma and we define the leader to be the
node with the maximum charisma. The issue with this approach is that the adversary, upon observing
that 𝑢 has the maximum charisma and is the leader, can immediately corrupt 𝑢, and make 𝑢 send an
equivocating proposal. Such an attack will not affect consistency, however, it will hamper liveness
due to the following: every honest node, upon seeing 𝑢’s equivocating proposal, removes 𝑢 from its
trust graph; and now they would vote for ⊥ in the Vote phase. An adversary with a corruption budget
of 𝑓 can continue this attack for 𝑓 epochs in which an honest node becomes the leader, and thus
liveness can take as long as Ω(𝑓 ) epochs to ensue.

To defeat the aforementioned attack, we are inspired by techniques from the standard Byzantine
Broadcast literature [2, 26] but it is not so trivial to adapt these techniques to our setting. At a
high level, during the Propose phase of each epoch, everyone multicasts a proposal using AckCast
pretending that it might be the elected leader. Because AckCast rather than TrustCast is used,
effectively everyone would also trustcast an ACK for everyone’s proposal. Note that at this time, the
VRF outcomes have not been revealed and the adversary cannot effectively single out and target the
leader.

Our key idea is to require that a valid proposal must contain everyone’s ACK message. In this way,
when nodes reveal their VRF outcomes (i.e., their charisma), the adversary may immediately corrupt
the leader, but it is already too late for the now-corrupt leader to insert a new equivocating proposal,
because there is no time for this new equivocating proposal to acquire ACKs from everyone. To
integrate this idea into our protocol would involve further technicalities and subtleties, but with this
intuition in mind, we can now present our protocol formally.

Commit evidence. Commit evidence is defined in the same way as in Section 5 except that our new
vote message has a few more terms (which will become clear shortly) — but we simply ignore these
additional terms when defining a commit evidence. Concretely, fix an epoch 𝑒 and a bit 𝑏 ∈ {0, 1}.
We say that a collection E containing signed messages of the form (vote, 𝑒, 𝑏, _, _, _) is an epoch-𝑒
commit evidence for 𝑏 w.r.t. 𝐺𝑟

𝑢 iff for every 𝑣 ∈ 𝐺𝑟
𝑢 , E contains a signed message (vote, 𝑒, 𝑏, _, _, _)

from 𝑣 . We also call an epoch-𝑒 commit evidence for 𝑏 w.r.t. 𝐺𝑟
𝑢 “a commit evidence for (𝑒, 𝑏) w.r.t.

𝐺𝑟
𝑢”.
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Protocol. Our protocol is described below. Note that although the protocol seems complicated,
most of it is the same as the protocol in Section 5. The main difference lays in how nodes propose
messages and elect leader.

Setup. Run (pp, {pk𝑢, sk𝑢}𝑢∈[𝑛]) ← VRF.Gen(1𝜆). Publish (pp, pk1, . . . , pk𝑛) and give sk𝑢 to
each 𝑢 ∈ [𝑛].
Assumption. For the initial sender 𝑠 ∈ [𝑛] in epoch 1, we redefine the outcome of VRF.Eval(pp,
sk𝑠 , 1) to be (∞,⊥), and we assume that VRF.Ver(pp, pk𝑠 , 1,∞,⊥) = 1. This makes sure that
the initial sender 𝑠 has the maximum charisma in epoch 𝑒 = 1. We shall also assume that by
construction, the function VRF will append to the outcome 𝑦 the unique identifier of the node 𝑢.
In this way, the evaluation outcomes for two different nodes must be distinct.

Main Protocol. For each epoch 𝑒 = 1, 2, . . .:
(1) Propose: (𝑂 (𝑑) rounds) Every node 𝑢 ∈ [𝑛] performs the following:
• Choose a bit to propose and an evidence as follows:

– If 𝑒 = 1 and 𝑢 is the initial sender, 𝑢 chooses 𝑃 := (𝑏,⊥) where 𝑏 is its input bit.
– Else if a non-⊥ commit evidence (for some bit) has been seen, let E(𝑒, 𝑏) denote the

freshest such commit evidence and let 𝑃 := (𝑏, E(𝑒, 𝑏)).
– Else, 𝑢 chooses a random bit 𝑏 and let 𝑃 := (𝑏,⊥).
• 𝑢 ackcasts the proposal (prop, 𝑒, 𝑃) by calling AckCastVfprop,𝑢 where

𝑣 .Vfprop (prop, 𝑒, (𝑏, E)) = true in round 𝑟 iff

(a) E is a valid commit evidence vouching for the bit 𝑏 proposed; and
(b) for every 𝑤 ∈ 𝐺𝑟

𝑣 , E is at least as fresh as any commit evidence trustcast by 𝑤 in the
Commit phase of all previous epochs 𝑒 ′ < 𝑒 — recall that ⊥ may be treated as a
commit evidence for epoch 0.

(2) Elect: (1 round) Every node 𝑢 ∈ [𝑛] computes (𝑦, 𝜋) := VRF.Eval(pp, sk𝑢, 𝑒), and sends
the signed tuple (elect, 𝑒, 𝑦, 𝜋) to everyone.

(3) Prepare: (𝑂 (𝑑) rounds) Every node 𝑢 ∈ [𝑛] does the following:
• Let 𝑆 ⊆ [𝑛] be the set of nodes 𝑣 satisfying the following: a

(a) 𝑢 has received from 𝑣 a signed tuple of the form (elect, 𝑒, 𝑦𝑣, 𝜋𝑣) where VRF.Ver(pp,
pk𝑣 , 𝑒,𝑦𝑣, 𝜋𝑣) = 1 — henceforth, 𝑦𝑣 is said to be 𝑣’s charisma;

(b) 𝑢 has received from 𝑣 a signed proposal of the form (prop, 𝑒, (𝑏, _)). Moreover,
everyone that remains in 𝑢’s trust graph has ACKed this proposal inAckCastVfprop,𝑣

earlier.
• Find the node 𝐿 ∈ 𝑆 whose charisma𝑦𝐿 is maximized based on lexicographical ordering.
• Trustcast the tuple (prep, 𝑒, 𝑏, 𝐿,𝑦𝐿, 𝜋𝐿) by calling TrustCastVfprep,𝑢 where

𝑣 .Vfprep (prep, 𝑒, 𝑏, 𝐿,𝑦, 𝜋) = true in round 𝑟 iff

(a) Everyone in 𝐺𝑟
𝑣 has ACKed a proposal of the form (prop, 𝑒, (𝑏, _)) by the end of the

AckCastVfprop,𝐿 instance; and
(b) VRF.Ver(pp, pk𝐿 , 𝑒,𝑦, 𝜋) = 1.
Henceforth, given a prepare message of the form (prep, 𝑒, 𝑏, 𝐿,𝑦, 𝜋), 𝑦 is said to be the
charisma of the prepare message.

(4) Vote: (𝑂 (𝑑) rounds) Every node 𝑢 ∈ [𝑛] performs the following:
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• Compare the (prep, 𝑒, _, _, _, _) messages that have been trustcast by all nodes 𝑣 that
still remain in 𝑢’s trust graph, and pick the one (prep, 𝑒, 𝑏∗, 𝐿∗, 𝑦∗, 𝜋∗) whose charisma
value 𝑦∗ is the maximum.
• Trustcast a vote of the form (vote, 𝑒, (𝑏∗, 𝐿∗, 𝑦∗, 𝜋∗)) by calling TrustCastVfvote,𝑢 where

𝑣 .Vfvote (vote, 𝑒, (𝑏, 𝐿,𝑦, 𝜋)) = true in round 𝑟 iff

(a) Everyone in𝐺𝑟
𝑣 has ACKed a proposal for𝑏 signed by 𝐿 by the end of the AckCastVfprop,𝐿;

(b) VRF.Ver(pp, pk𝐿 , 𝑒,𝑦, 𝜋) = 1;
(c) For everyone 𝑤 ∈ 𝐺𝑟

𝑣 , 𝑦 must be at least as large as the charisma of the prepare
message trustcast to 𝑣 by 𝑤 .

(5) Commit: (𝑂 (𝑑) rounds) Every node 𝑢 ∈ [𝑛] performs the following:
• If everyone still in 𝑢’s trust graph voted for the same bit 𝑏 ∈ {0, 1} (as defined by the

outputs of the TrustCastVfvote,𝑢 protocols during the Vote phase), then output the bit
𝑏, and trustcast a commit message (comm, 𝑒, E) by calling TrustCastVfcomm,𝑢 , where E
contains a signed vote message of the form (vote, 𝑒, (𝑏, _)) from everyone in 𝑢’s trust
graph.
• Else, use TrustCastVfcomm,𝑢 to trustcast the message (comm, 𝑒,⊥).
We define the verification function Vfcomm below. 𝑣 .Vfcomm (comm, 𝑒, E) = true in round 𝑟

iff:
(a) either 𝑣 has seen a tuple (elect, 𝑒, 𝑦, 𝜋) signed by some𝑤 ∉ 𝐺𝑟

𝑣 such that (1) VRF.Ver(pp,
pk𝑤 , 𝑒,𝑦, 𝜋) = 1, and (2) for everyone 𝑤 ′ ∈ 𝐺𝑟

𝑣 ∪ 𝑆 , 𝑦 is greater than the charisma of
the prepare message trustcast by 𝑤 ′.

(b) or E must be a valid epoch-𝑒 commit evidence.
Terminate: Same as in Section 5.
aWe want to make sure that as long as a node remains honest in the propose phase, it will be in the set 𝑆 of any honest
node 𝑢.

In the rest of the section, we will prove the following theorem.

Theorem 6.7. The protocol described in this section achieves Byzantine Broadcast in expected
𝑂 ((𝑛/ℎ)2) number of rounds under the presence of a weakly adaptive adversary.

6.4 Proof of Correctness for the Verification Functions
Lemma 5.3 and Fact 5.6 still hold in our new protocol and the proofs are the same as before. This
means that Vf𝑝𝑟𝑜𝑝 satisfies the monotonicity condition and the validity at origin condition. We now
check that the other verification functions satisfy the two conditions as well.

Lemma 6.8. Vfprep satisfies the monotonicity condition.

PROOF. Recall that a prepare message (prep, 𝑒, 𝑏, 𝐿,𝑦𝐿, 𝜋𝐿) passes Vfprep w.r.t. node 𝑢 in round 𝑟

iff
(a) Everyone in𝐺𝑟

𝑢 has ACKed a proposal of the form (prop, 𝑒, (𝑏, _)) by the end of the AckCastVfprop,𝐿

instance; and
(b) VRF.Ver(pp, pk𝐿 , 𝑒,𝑦, 𝜋) = 1.

Condition (b) clearly satisfies the monotonicity condition. We now focus on condition (a). Let 𝑢, 𝑣 be
honest and let 𝑡 > 𝑟 . Recall that 𝐺𝑡

𝑣 ⊆ 𝐺𝑟
𝑢 by the trust graph monotonicity. Suppose that condition

(a) is satisfied for some message w.r.t. 𝐺𝑟
𝑢 , it suffices to show that 𝑣 has heard every 𝑤 ∈ 𝐺𝑡

𝑣 ACK
the same proposal in the AckCastVfprop,𝐿 instance as what 𝑢 heard from 𝑤 . If this is not true, then 𝑢

would have relayed the equivocating message to 𝑣 and 𝑣 would have already removed 𝑤 from its trust
graph by the beginning of round 𝑡 . □
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Lemma 6.9. Vfvote satisfies the monotonicity condition.

PROOF. Recall that a vote message (vote, 𝑒, (𝑏, 𝐿,𝑦, 𝜋)) passes Vfvote w.r.t. node 𝑢 in round 𝑟 iff
(a) Everyone in 𝐺𝑟

𝑢 has ACKed a proposal for 𝑏 signed by 𝐿 by the end of the AckCastVfprop,𝐿;
(b) VRF.Ver(pp, pk𝐿 , 𝑒,𝑦, 𝜋) = 1;
(c) For everyone 𝑤 ∈ 𝐺𝑟

𝑢 , 𝑦 must be at least as large as the charisma of the prepare message
trustcast to 𝑢 by 𝑤 .

In Lemma 6.8, we have already shown that conditions (a) and (b) satisfy the monotonicity condition.
We now focus on condition (c). Suppose that 𝑢 and 𝑣 are honest and 𝑡 > 𝑟 . Recall that 𝐺𝑡

𝑣 ⊆ 𝐺𝑟
𝑢 by

the trust graph monotonicity. Suppose that condition (c) is satisfied for some message w.r.t. 𝐺𝑟
𝑢 , it

suffices to show that the same 𝑦 contained in the message is at least as large as the charisma of the
prepare message trustcast to 𝑣 by any 𝑤 ∈ 𝐺𝑡

𝑣 . This follows since 𝑣 must have heard any 𝑤 ∈ 𝐺𝑡
𝑣

trustcast the same prepare message as what 𝑢 heard 𝑤 trustcast; otherwise, 𝑢 would have relayed
the equivocating message to 𝑣 and 𝑣 would have removed 𝑤 from its trust graph by the beginning of
round 𝑡 . □

Lemma 6.10. Vfcomm satisfies the monotonicity condition.

PROOF. A commit message (comm, 𝑒, E) = true passes Vfcomm w.r.t. node 𝑢 in round 𝑟 iff
(a) either 𝑣 has seen a tuple (elect, 𝑒, 𝑦, 𝜋) signed by some𝑤 ∉ 𝐺𝑟

𝑣 such that (1) VRF.Ver(pp, pk𝑤 ,
𝑒,𝑦, 𝜋) = 1, and (2) for everyone 𝑤 ′ ∈ 𝐺𝑟

𝑣 ∪ 𝑆 , 𝑦 is greater than the charisma of the prepare
message trustcast by 𝑤 ′.

(b) or E must be a valid epoch-𝑒 commit evidence.
The monotonicity of condition (a) follows from trust graph monotonicity as well as the implicit
echoing assumption. The monotonicity of condition (b) follows from the monotonicity of commit
evidences. □

Next, we show that the verification functions satisfy the validity at origin condition.

Fact 6.11. If an honest node 𝑢 trustcasts a (prop, 𝑒, 𝑃), (prep, 𝑒, 𝑃) or a (vote, 𝑒, 𝑏) message in
some round 𝑟 , the trustcast message satisfies the corresponding verification function, Vfprop, Vfprep,
Vfvote, respectively, w.r.t. the node 𝑢 in round 𝑟 .

It can be verified that Vfprop, Vfprep and Vfvote satisfies the validity at origin condition by construc-
tion. The verification functions are designed such that they will always accept the trustcast messages.
The validity at origin condition for Vfcomm, on the other hand, is not as simple.

Lemma 6.12. At the beginning of the Commit phase of some epoch 𝑒, for an honest node 𝑢, if the
largest charisma 𝑢 has seen from any elect message, i.e.,

max
𝑦
{elect messages (elect, 𝑒, 𝑦, 𝜋) that 𝑢 has seen such that VRF.Ver(pp, pk𝑤 , 𝑒,𝑦, 𝜋) = 1},

comes from the prepare message trustcast by some 𝑤 in 𝑢’s trust graph. Then, every 𝑤 ′ who still
remains 𝑢’s trust graph must have trustcast a vote for the same bit 𝑏 that 𝑢 has voted for in this
epoch.

PROOF. We can prove by contradiction. Suppose that the premise holds but some 𝑣 in 𝑢’s trust
graph has successfully trustcast a vote of the form (vote, 𝑒, (1 − 𝑏, 𝐿,𝑦 ′, 𝜋 ′))to 𝑢.u Since Vfvote
accepts 𝑣’s vote message w.r.t. 𝑢, by the definition of Vfvote, we have
• VRF.Ver(pp, pk𝐿 , 𝑒,𝑦 ′, 𝜋 ′) = 1, and,
• for every 𝑤 in 𝑢’s trust graph, 𝑦 ′ must be at least as large as the charisma of the prepare

message trustcast to 𝑢 by 𝑤 .
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Since the premise holds, 𝑦 ′ must be the largest charisma 𝑢 has seen for any node. By definition of the
protocol, 𝑢 must have voted for the bit 1 − 𝑏 too. Thus, we have reached a contradiction. □

Fact 6.13. If an honest node 𝑢 trustcasts a (comm, 𝑒, E) message in some round 𝑟 , the trustcast
message satisfies the verification function, Vfcomm w.r.t. the node 𝑢 in round 𝑟 .

PROOF. Follows from Lemma 6.12. □

Therefore, all the verification functions used in the protocol satisfy the monotonicity condition
and the validity at origin condition.

6.5 Consistency, Liveness and Validity Proof
We first show that our protocol achieves consistency. Compared to the protocol in Section 5.2, the
changes we made to the protocol in Section 6.3 do not affect its consistency. Thus, the consistency
proof is exactly the same as before (see Section 5.4). We briefly restate the proof intuition below.

Theorem 6.14 (Consistency). The protocol described in Section 6.3 satisfies consistency.

PROOF. In Section 5, we proved consistency using Lemma 5.10 and Lemma 5.11.
• Lemma 5.10: If an honest node 𝑢 ∈ [𝑛] sees an epoch-𝑒 commit evidence for the bit 𝑏 ∈ {0, 1}

in some round 𝑟 , and an honest node 𝑣 ∈ [𝑛] sees an epoch-𝑒 commit evidence for the bit
𝑏 ′ ∈ {0, 1} in some round 𝑡 , it must be that 𝑏 = 𝑏 ′.
• Lemma 5.11: If an honest node 𝑢 ∈ [𝑛] outputs the bit 𝑏 in some epoch 𝑒, then in every epoch
𝑒 ′ > 𝑒, no honest node 𝑣 ∈ [𝑛] can ever see a commit evidence for (𝑒 ′, 1 − 𝑏).

The two lemmas hold for the protocol in this Section 6.3 as well. The proofs for the two lemmas
remain unchanged. Therefore, any two honest nodes cannot output different bits. □

Next, we show that our protocol achieves liveness and terminates in expected constant rounds.
Observe that Fact 5.14 of Section 5.5 still holds due to the same argument as before. We restate it as
follows.

Claim 5.14. If some honest node terminates in round 𝑟 , then all honest nodes will have terminated
by the end of round 𝑟 + 1.

During the execution, even before nodes reveal their charisma for some epoch 𝑒, we can already
define a node 𝑢’s epoch-𝑒 charisma as the honestly computed VRF outcome VRF.Eval(pp, sk𝑢, 𝑒).
This definition is well-formed no matter whether the node is honest or corrupt.

Definition 6.15 (Lucky epoch). Henceforth, we say that epoch 𝑒 is lucky iff the node with the
maximum epoch-𝑒 charisma has not been corrupted until it has sent a signed (elect, 𝑒, _, _) message.

Lemma 6.16. Suppose that the VRF satisfies unforgeability. Except with negligible probability, the
following holds: if 𝑒 is a lucky epoch, then one round after the end of epoch 𝑒, all honest nodes will
terminate.

PROOF. By Fact 5.14, if any honest node terminates during epoch 𝑒, all honest nodes will terminate
in the next round. Therefore, it suffices to prove the lemma assuming that no honest node has
terminated by the end of epoch 𝑒, i.e., we may assume that all honest nodes will participate in all the
TrustCast protocols till the end of epoch 𝑒. Thus, we can safely use the properties of TrustCast.

Suppose epoch 𝑒 is a lucky epoch. This means that the node 𝐿 with the maximum epoch-𝑒 charisma
has not been corrupted until it has sent the signed elect message (elect, 𝑒, 𝑦, 𝜋). Since the adaptive
adversary cannot remove messages already sent, all honest nodes will receive the elect message.
Every honest node will then trustcast (prep, 𝑒, 𝑏, 𝐿,𝑦, 𝜋) where 𝑏 is 𝐿’s proposed bit in the Propose
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phase of epoch 𝑒. Since 𝐿 remains honest throughout the propose phase, all nodes have consistent
view on 𝐿’s proposed bit and they can only Ack 𝑏. After the propose phase, honest nodes no longer
Ack any new proposal. Thus, even if 𝐿 becomes corrupt immediately after sending the elect message,
it cannot gather Ack messages from honest nodes on the bit 1 − 𝑏.

By Theorem 4.1, after the Vote phase, for any two honest nodes 𝑢 and 𝑣 , 𝑢 must have received a
vote from 𝑣 that passes Vfvote. Due to condition (c) of the Vfvote check, the vote from 𝑣 must vote for
the same bit 𝑏 that 𝐿 proposes. Thus, at the end of the Vote phase, any honest node would receive
votes on 𝑏 from every node in its trust graph, which forms a commit evidence for 𝑏.

Again, by Theorem 4.1, after the Commit phase, for any two honest nodes 𝑢 and 𝑣 , 𝑢 must have
received a commit message from 𝑣 that passes Vfcomm. Recall that a ⊥ commit message passes
Vfcomm w.r.t. node 𝑢 iff there exists a node not in 𝑢’s trust graph, whose charisma is greater than
all the prepare messages 𝑢 has received. However, since epoch 𝑒 is a lucky epoch, all honest nodes
generate its prepare message from 𝐿, who has the largest charisma in epoch 𝑒. Therefore, all the
commit messages received must be non-⊥ commit messages. And since all honest nodes vote on
𝑏 in the Vote phase, the commit message must be on 𝑏. In conclusion, unless the adversary can
successfully forge a VRF result which happens with negligible probability, any honest node will
receive commit messages from every node in its trust graph on 𝑏. This satisfies the termination
condition and all honest nodes will terminate.

□

Lemma 6.17. Suppose that the VRF satisfies pseudorandomness under selective opening. Then,
let Rlucky be a random variable denoting the first lucky epoch. It must be that there is a negligible
function negl(·) such that for every 𝑅,

Pr[Rlucky ≥ 𝑅] ≤ Pr[Geom(ℎ/𝑛) ≥ 𝑅] + negl(𝜆)
where Geom(ℎ/𝑛) denotes a geometric random variable with probability ℎ/𝑛.

PROOF. We can consider an ideal-world protocol which is defined just like the real-world protocol
except for the following: whenever a node needs to compute VRF.Eval(pp, pk𝑢, 𝑒), it will instead call
an ideal functionality F .Eval(𝑢, 𝑒). Upon receiving this call, F picks 𝑦, at random if this is the first
time Eval(𝑢, 𝑒) is queried, and records the tuple (𝑢, 𝑒,𝑦). Now F returns the answer 𝑦 that has been
recorded for the query (𝑢, 𝑒), and the tuple (𝑦,⊥) will be used in place of the outcome of the VRF
evaluation. Similarly, whenever a node needs to call VRF.Ver(pp, pk𝑢, 𝑒, 𝑦, 𝜋), the call is replaced
with a call to F .Ver(𝑢, 𝑒,𝑦), which simply checks if the tuple (𝑢, 𝑒,𝑦) has been recorded — if so,
return 1; else return 0.

In this ideal world protocol, since leaders are elected completely randomly, it is not hard to see
that Pr[Rlucky ≥ 𝑅] = Pr[Geom(ℎ/𝑛) ≥ 𝑅].

By the VRF technical lemma (Lemma 6.3), it is impossible to distinguish between the results of
VRFs (the real-world protocol) and uniformly random distribution (the ideal world protocol) for any
polynomially bounded adversary. It thus follows that in the real-world protocol,

Pr[Rlucky ≥ 𝑅] ≤ Pr[Geom(ℎ/𝑛) ≥ 𝑅] + negl(𝜆)
as long as the adversary is polynomially bounded.

□

Theorem 6.18 (Liveness). Assume that the VRF adopted satisfies pseudorandomness under selective
opening and unforgeability. Then, the protocol described in Section 6.3 achieves liveness in𝑂 ((𝑛/ℎ)2)
number of rounds.

PROOF. Follows directly from Lemma 6.16 and Lemma 6.17. □
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Finally, we show that the protocol also achieves validity. Note that the definition of validity needs
to be slighted adjusted under the adaptive adversary model. Since an adaptive adversary can corrupt
arbitrary nodes at any time, the validity requirement only makes sense when the initial sender remains
honest throughout the entire protocol.

Theorem 6.19 (Validity). Assume that the VRF adopted satisfies unforgeability. For the protocol
described in Section 6.3, the following holds except with negligible probability: if the designated
sender 𝑠 is (forever) honest, then everyone will output the sender’s input bit.

PROOF. Recall that by our construction, 𝑠 is guaranteed to have the maximum charisma in epoch
1. The proof of Lemma 6.16 implies that if 𝑠 is (forever) honest, at most one round after epoch 𝑒 = 1,
all honest nodes will have terminated with an output that agrees with 𝑠’s proposal. □

We have shown that the protocol satisfies liveness, consistency and validity. This gives our final
theorem.

Theorem 6.7. The protocol described in this section achieves Byzantine Broadcast in expected
𝑂 ((𝑛/ℎ)2) number of rounds under the presence of a weakly adaptive adversary.

PROOF. Follows from Theorem 6.14, 6.18 and 6.19. □

7 CONCLUSION AND FUTURE WORK
Our paper presents a Byzantine Broadcast protocol with amortized 𝑂 (1) round complexity that
works even under dishonest majority. The round complexity is constant and the communication
complexity is 𝑂 (𝑛4) (for the entire system). We believe this is the first protocol that gives constant
round complexity for Byzantine Broadcast under dishonest majority.

It has been shown by Garay et al. [20] that no randomized protocols can achieve BB in less
than 𝑂 (𝑛/(𝑛 − 𝑓 )) number of rounds, even assuming static corruption and allowing standard setup
assumptions. Therefore, for the (narrow) regime 𝑛 − 𝑓 = 𝑜 (𝑛), there is still an asymptotical gap
between our upper bound and their lower bound. Bridging this gap is an exciting direction for future
work.
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