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ABSTRACT
We investigate the optimal trade-off between utility and privacy us-

ing one-sided perturbation. Unlike conventional privacy-preserving

statistical releases, randomization for obfuscating side-channel in-

formation is often constrained by infrastructure limitations. In

practical scenarios, these constraints may only allow positive and
bounded perturbations. For example, extending processing time

or sending and storing dummy messages/data is typically feasible.

However, implementing modifications in the opposite direction

is challenging due to restrictions imposed by hardware capacity,

communication protocols, and data management systems. In this

paper, we establish the foundation of the positive noise mechanism

within three semantic privacy frameworks: Differential Privacy

(DP), Maximal Leakage (MaxL), and Probably Approximately Cor-

rect (PAC) Privacy. We then present a series of results that char-

acterize or approximate the optimal one-sided noise distribution,

subject to a second-moment budget and a bounded maximal magni-

tude. Building on this theoretical foundation, we develop efficient

tools to solve the underlying optimization problems. Through ex-

periments conducted in various scenarios, we demonstrate that

existing techniques, such as Truncated Biased Laplace noise, are

often suboptimal and result in excessive performance degradation.

For instance, in an anonymous communication system with a 250𝐾

message budget, our optimized DP noise mechanism achieves a

21× reduction in dummy messages and an 18× reduction in dummy

message latency overhead compared to traditional methods.
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1 INTRODUCTION
Perturbation is one of the most general approaches to randomize a

processing procedure for privatizing information disclosure. Vari-

ous mathematical notions of privacy, including Differential Privacy

(DP) [22, 23], Maximal Leakage (MaxL) [28] and PAC Privacy [46]

have been established to formally quantify the attainable privacy

guarantees through noise addition.

Most commonly-adopted noises are symmetric, which, to be

more specific, are unbounded and two-sided centered around 0 (i.e.,

zero mean). Examples include standard Laplacian noise for pure

𝜖-differential privacy (DP) [23], and Gaussian noise for approximate

(𝜖, 𝛿)-DP [22] and PAC Privacy [38, 46, 47].

However, many real-world applications impose specific con-

straints on the noise mechanisms. Due to application semantics,

negative noise values may be impermissible. For instance, in anony-

mous communication systems, it is feasible to inject dummy mes-

sages, but removing existing messages could compromise function-

ality [11, 41]. Similarly, in encrypted database applications, one may

pad the running time or the number of memory accesses needed to

obscure the query and database contents [14], but reducing them

could lead to errors or incorrect outputs. All of the above scenarios

can be modeled using one-sided bounded noise, i.e., noise that is

non-negative, has a positive mean (also referred to as bias), and lies

within a bounded interval.

Take DP as an example. The most common practice for adding

one-sided noise so far is to rely on a truncated and shifted Laplacian

(or geometric) distribution [14, 41]. This approach involves shifting

the mean of a standard Laplacian distribution to the positive (right)

side until the negative (left) tail becomes sufficiently small, which

will be truncated; we then redistribute the probability mass else-

where after truncation. Unfortunately, this approach does not yield
optimal error, either for a single disclosure setting or for multiple

disclosures that require composition. One key result we will demon-

strate is that, the optimal one-sided noise distribution is generally

asymmetric and heavily dependent on the security parameters. This

is dramatically different from the case of non-biased noise where

independent of target DP security parameters, the optimal form

belongs to or can be closely approximated by some simple distribu-

tion class, such as staircase Laplace [27] or Gaussian [5]. Instead,

case-by-case optimization is necessary for one-sided noise.

The starkly different landscapes are largely due to the different

characteristics of the error produced by noise. Throughout this
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Figure 1: Illustration of zero-mean Laplace/Gaussian Mecha-
nism and positive truncated biased Laplace/Gaussian Mecha-
nism of the same noise variance. (1) Laplace, the taller (red)
distribution, is less concentratedwith a heavier tail compared
to Gaussian, the wider (blue) distribution. (2) To produce the
same (𝜖, 𝛿)-DP guarantee, truncated Laplace noise requires a
larger bias 𝜇𝐺 but less variance compared to truncated Gauss-
ian noise. In general, the concentration of optimal DP one-
sided noise needs to be carefully selected depending on the
given (𝜖, 𝛿) security parameters to balance the bias (the mean
𝜇𝐺 ) and variance required, and the optimal noise form is
generally not simply either a Laplace or Gaussian.

.

paper, we define the error of injected noise by the expectation of its

square (second moment). For one-sided noise, both the bias (i.e., the

positive mean) and variance of the noise distribution contribute to

the error, unlike the case of unbiased noise where only its variance

affects the error. The optimal distribution of one-sided noise thus

needs to be carefully selected to balance both bias and variance

simultaneously, and, unfortunately, simply shifting classic distri-

butions, including staircase Laplace or Gaussian distributions, is

generally no longer optimal as partially illustrated in Fig. 1, though

they yield (asymptotic) optimal utility (error)-privacy trade-off in

the regime of non-biased perturbation, .

In addition to the absence of theory to understand the funda-

mental gap in utility loss/error caused by the one-sided constraint,

to the best of our knowledge, there is also no known framework to

help privacy practitioners determine the optimal one-sided noise

distribution. Note that for two-sided noise, especially in a composi-
tional setting with multiple disclosures, many software toolboxes,

including OpenDP [26] and Opacus [51], have been developed to

automatically optimize noise parameters in standard DP implemen-

tations. A library for one-sided noise mechanisms, especially for

different privacy metrics, is highly desirable.

1.1 Our Contributions
In this paper, we not only lay the foundation for characterizing the

minimal one-sided bounded noise under three semantic privacy def-

initions—Differential Privacy (DP), Maximal Leakage (MaxL), and

PACPrivacy—but also introduce an open-source library, lib-1sided
-noise to assist privacy practitioners in their tasks. In general, the

optimal one-sided noise does not have a closed-form expression,

and the solutions vary across different privacy definitions. To ad-

dress this, we develop optimization algorithms separately with

efficient implementations in our library. These enable automatic

determination or approximation of the optimal noise under the

selected privacy metric and budget. Additionally, we provide com-

prehensive comparisons of the semantic interpretations of privacy

definitions to guide practitioners in selecting the most appropriate

metrics for addressing diverse privacy concerns across applications

(see Section 2.4). We summarize our theoretical and algorithmic

contributions below:

Differential Privacy For a single release (without composition)

with (𝜖, 𝛿)-DP guarantee, we present the optimal positive,

bounded noise distribution (Theorem 1). For multiple re-

leases, we present a new and tight composition accounting

by generalizing the Rényi divergence (Theorem 2) and trans-

forming the determination of minimal positive noise under

𝑇 -fold composition into a constrained optimization. Finally,

we show how to iteratively apply convex optimizations (Al-

gorithm 1) to optimize the noise distribution (Theorem 3) to

approximate the optimal solution.

Maximal Leakage We prove that the optimal positive perturba-

tion strategy with minimal cost/overhead to produce log(𝑣)-
MaxL, for an arbitrary real number 𝑣 ≥ 1, is a linear inter-

pretation of the optimal deterministic perturbation schemes

to produce log(⌊𝑣⌋) and log(⌈𝑣⌉) MaxL, respectively (Theo-

rem 4). We then apply dynamic programming to build the

first efficient algorithm (Algorithm 2) to find the provably

optimal perturbation in polynomial time.

PAC Privacy We study the PAC Privacy bound for black-box pro-

cessing given the output variance.We prove given the second

moment budget and a maximal magnitude restriction, the

optimal positive noise must be within a family of truncated

Gaussian (Theorem 5) and the problem is reduced to opti-

mize the mean and variance of the Gaussian being truncated.

We present an efficient optimization algorithm that executes

a series of simple iterative binary searches (Algorithm 3).

1.2 Concrete Results on Applications
1.2.1 Network Traffic Leakage. Anonymous communication while

hiding who is communicating with whom has received significant

attention. It is known that even if messages are encrypted, metadata

that reveals active users can be recovered through network traffic

analysis [31, 41]. A common privatization mechanism is to ask

users to send dummy messages [30], which is essentially a positive

perturbation to the packet volume observed by the adversary. Its

privacy guarantee has been measured from a DP point of view in

[39, 41]. On the other hand, if one adopts dropping messages or

partitioning messages into multiple communications to produce a

negative obfuscation, it can break soundness unless the system has

redundancy built-in, which itself can be expensive.

Compared to truncated Laplace noise adopted in [8, 14, 34, 41],

we show the scale of optimized one-sided DP noise can be orders of
magnitude smaller in practice: for Vuvuzela anonymous commu-

nication [41], we achieve 21× less dummy messages with 18× less

dummy message latency overhead for a 250K message budget.

1.2.2 Mitigating Cache-Timing Attacks. The execution of crypto-

graphic algorithms or operations on different inputs takes different

times and, in practice, it is challenging to write high-performance

constant-time software for general-purpose computers [7]. This

additional data-dependent timing information could leak crypto-

graphic secrets; in some applications, timing information can be

simply characterized by hits and misses to a cache [29]. Bernstein

in [7] presented concrete cache-timing attacks to fully recover an

Advanced Encryption Standard (AES) secret key. More recently, for

OpenSSL’s constant-time code, a cache-timing attack on RSA key
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generation was developed by exploiting a vulnerable code path [2].

Even in Trusted Execution Environments (TEEs), through cache-

timing and speculation attacks, Bulck et al. proposed Foreshadow
to break Intel Software Guard eXtensions (SGX) [40]. In practical

execution, it is easy to turn cache hits into misses, but not vice versa.

To obfuscate timing and cache information and provably mitigate

attacks, the corresponding modification must be positive.

In this paper, we present the first formal analysis with optimal

one-sided noise to obfuscate the cache-timing leakage in a 256-bit

AES secret key generation from S-boxes [4] under both MaxL and

PAC Privacy. In particular, we show a small random positive noise

with 1 dummy miss in expectation can provably ensure a negligible

adversarial success rate (< 2
−245

) to correctly recover a 256-bit

secret key (Fig. 4).

2 PRELIMINARIES
In this section, we formally introduce three semantic and rigor-

ous privacy definitions: Differential Privacy (DP) [21, 23], Maximal

Leakage (MaxL) [28], and PAC Privacy [46]. At a high level, the

problem of information leakage control can be described by the

following generic model: for some sensitive data/input 𝑋 ∈ X∗
and some processing function F : X∗ → Y∗, the output F (𝑋 )
represents the release/leakage. The goal of privacy preservation

is to randomize or modify the original processing function F into

a versionM such that provided the randomized or noisy output

M(𝑋 ), the adversary cannot implement meaningful inference on

the sensitive input 𝑋 . The following privacy definitions offer for-

mal languages to quantify such hardness from different angles. In

Section 2.4, we include a comparison regarding their applicability

and the underlying operational challenges in practice.

2.1 Differential Privacy
Definition 1 (Differential Privacy [22]). Given a dataset

universe X∗, we say that two datasets 𝑋,𝑋 ′ ⊆ X∗ are adjacent,
denoted as 𝑋 ∼ 𝑋 ′, if 𝑋 can be obtained by replacing one datapoint
in 𝑋 ′, i.e., 𝑋 = (𝑋 ′/𝑥 ′) ∪ 𝑥 . A randomized algorithmM is said to be
(𝜖, 𝛿)-differentially-private (DP) if for any pair of adjacent datasets
𝑋,𝑋 ′ and any event set 𝑌 in the output domain ofM

P(M(𝑋 ) ∈ 𝑌 ) ≤ 𝑒𝜖 · P(M(𝑋 ′) ∈ 𝑌 ) + 𝛿. (1)

(𝜖, 𝛿)-DP enjoys an intuitive interpretation where 𝑒𝜖 and 𝛿 rep-

resent a multiplicative and an additive term, respectively, to capture

the worst-case divergence/difference between the likelihood func-

tions produced by two arbitrary adjacent datasets 𝑋 and 𝑋 ′. From
a hypothesis testing perspective, small 𝜖 and 𝛿 will imply either a

large Type I or Type II error [20]. In practice, Gaussian and Laplace

mechanisms are the workhorses to randomize a processing func-

tion for 𝜖 (, 𝛿)-DP guarantee [24]: the scale of noise is calibrated

to the sensitivity, i.e., the maximal possible change to the output

when one arbitrarily replaces a single datapoint. Unfortunately,

tight sensitivity is in general NP-hard to compute [50]. Thus, an im-

portant concept in DP research is composition, which captures the

cumulative privacy risk from multiple releases and plays a key role

to privatize algorithms in practice. A complicated algorithm with

intractable sensitivity, such as DP-SGD, is usually decomposed into

multiple, relatively simpler suboperations with tractable/bounded

sensitivity, such as gradient mean estimation of a batch of samples

[1, 43, 48, 49]; one can then perturb the intermediate outcomes from

each suboperation, assuming that they are released, and derive an

upper bound by composing the privacy loss of the release from

each iteration, as formalized in the following proposition.

Proposition 1 (Advanced Composition [25]). For any 𝜖0 > 0 and
𝛿0 ∈ (0, 1), the class of (𝜖0, 𝛿0)-differentially private mechanisms
satisfies (𝜖,𝑇𝛿0 + ˜𝛿)-differential privacy under 𝑇 -fold adaptive com-
position, where, for any ˜𝛿 > 0,

𝜖 =

√︃
2𝑇 log(1/ ˜𝛿) · 𝜖0 +𝑇𝜖0 (𝑒𝜖0 − 1) . (2)

When 𝜖0 = 𝑜 (1/
√
𝑇 ), the latter term𝑇𝜖0 (𝑒𝜖0 − 1) is 𝑜 (1) and the

advanced composition (2) roughly states that 𝜖 scales in 𝑂 (
√
𝑇 )

under 𝑇 -fold composition, which is general and only counts on the

(𝜖0, 𝛿0)-DP guarantee per release.

2.2 Maximal Leakage
Similar to DP which considers an input-independent guarantee,

Maximal Leakage (MaxL) is another operationally-interpretable

definition, which measures how much more likely the adversary

can identify the true input given the release. Let 𝑈 ∈ U∗ denote
the user’s secret, 𝑋 ∈ X∗ denote some intermediate parameter of

a processing mechanismM : X∗ → Y∗, whose input and output

domains areX∗ andY∗, respectively, and𝑌 ∈ Y∗ denote the output
ofM. Here,U∗, X∗ andY∗ are all assumed to be finite sets, which

can be generalized to the continuous case [28]. Clearly,𝑈 , 𝑋 and 𝑌

form a Markov Chain, denoted as𝑈 − 𝑋 − 𝑌 ; the formal definition

of MaxL is given below.

Definition 2 (Maximal Leakage [9, 28]). Let 𝐴𝑑𝑣 : Y∗ →U∗
be an arbitrary algorithm that the adversary applies to recover the
secret𝑈 from the observation on𝑌 . MaxLwith respect to the processing
procedure𝑈 − 𝑋 − 𝑌 is defined as

L(𝑋 → 𝑌 ) = sup

𝑈 :𝑈 −𝑋−𝑌
log

sup𝐴𝑑𝑣 Pr(𝑈 = 𝐴𝑑𝑣 (𝑌 ))
max𝑢 Pr(𝑈 = 𝑢) , (3)

which is known to enjoy an equivalent form [3, 28, 33]

L(𝑋 → 𝑌 ) = log

∑︁
𝑦∈Y∗

max

𝑥∈X∗
P(𝑌 = 𝑦 |𝑋 = 𝑥). (4)

Compared to DP with a particular focus on individuals, the pri-
vacy concern of MaxL is regarding the full reconstruction over

the entire input 𝑈 , where (3) upper bounds the multiplicative gain
to adversary’s posterior knowledge on the secret 𝑈 after observ-

ing the release 𝑌 . To be more specific, if a mechanism M sat-

isfies log(𝑣)-MaxL, then the ratio between the optimal posterior
chance that an adversary can correctly identify the true input,

sup𝐴𝑑𝑣 Pr(𝑈 = 𝐴𝑑𝑣 (𝑌 )), and the optimal a priori success rate

that the adversary can identify the true input, sup
�̃�

Pr(𝑈 = �̃� ),
is bounded by 𝑒𝑣 for any possible prior distribution of𝑈 .

Additionally, the non-adaptive composition of MaxL enjoys a

simple summation form [28]. In the same setup𝑈 −𝑋 −𝑌 = (𝑌1, 𝑌2),
let 𝑌1 and 𝑌2 be the releases from two mechanisms which are inde-

pendent conditional on 𝑋 , then we have

L(𝑋 → 𝑌 ) ≤ L(𝑋 → 𝑌1) + L(𝑋 → 𝑌2). (5)
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2.3 PAC Privacy
From an input-independent perspective, Differential Privacy (DP)

and Maximal Leakage (MaxL) measures privacy risk/loss in terms

of the worst-case distinguishability and the multiplicative gain of

successfully identifying the secret, respectively. However, both DP

and MaxL require white-box algorithmic analysis—such as sensi-

tivity or output likelihood—of the processing function F to derive

provable privacy solutions. This reliance makes it challenging to

handle (side-channel) leakage from complicated circuits/processors

or involved protocols which generally lacks closed form; mean-

while, membership and identification may also not tightly capture

broader inference problems, such as (partial) reconstruction attacks.

In contrast, PAC Privacy supports black-box privatization. A

noise solution can be automatically determined to resist any tar-

get adversarial inference, and PAC Privacy analysis only requires

black-box access to the underlying secret generation and processing

function F [46]. Conceptually, PAC Privacy challenges an adver-

sary to return a satisfactory estimation �̃� of the sensitive input

𝑋 and quantifies the posterior success probability. The criterion

of satisfactory reconstruction reflects the level of leakage deemed

unacceptable by the secret holder, where, for example, �̃� approx-

imates the salary attribute of a record 𝑋 with error smaller than

1000, or predicts at least 200 bits correctly of a 256-bit secret key 𝑋 .

The formal definition is given below.

Definition 3 ((𝛿𝜌 , 𝜌,D) PAC Privacy [38, 45–47]). For a pro-
cessing mechanism M : X∗ → Y∗, data distribution D, and an
inference criterion function 𝜌 (·, ·), we sayM satisfies (𝛿𝜌 , 𝜌,D)-PAC
Privacy if the following experiment is impossible:

A user generates data 𝑋 from distribution D and sendsM(𝑋 ) to
an adversary. The adversary who knows D andM is asked to return
an estimation �̃� on 𝑋 such that with probability at least (1 − 𝛿𝜌 ),
𝜌 (�̃� , 𝑋 ) = 1.

In Definition 3, the probability is based on the randomness in

both secret generation𝑋 ← D and themechanismM. The criterion

of satisfactory estimation is captured by the indicator function 𝜌

where 𝜌 (�̃� , 𝑋 ) = 1 if and only if �̃� successfully recovers the targeted

feature of𝑋 . Continuing with the previous examples, we can define

𝜌 (�̃� , 𝑋 ) = 1 iff the estimation error of �̃� on the salary attribute

smaller than 1000 or if 𝑋 and �̃� collide in least 200 bits.

Operationally, to upper bound (1−𝛿𝜌 ), [46] studies the difference
between the optimal prior and posterior success rate in f-divergence
[37]. Let (1 − 𝛿𝑜,𝜌 ) denote the optimal a priori success rate, i.e., the
best chance that an adversary can return a satisfied estimation �̃�

such that 𝜌 (�̃� , 𝑋 ) = 1 before observing the releaseM(𝑋 ):
1 − 𝛿𝑜,𝜌 = arg𝑋 ′∈X∗ Pr

𝑋←D
(𝜌 (𝑋 ′, 𝑋 ) = 1). (6)

[46] introduces two Bernoulli variables 1𝛿𝜌 and 1𝛿𝑜,𝜌 , where Pr(1𝛿𝜌 =

1) = (1 − 𝛿𝜌 ) and Pr(1𝛿𝑜,𝜌 = 1) = (1 − 𝛿𝑜,𝜌 ), respectively, and con-

siders the f-divergence between these two Bernoulli distributions,

Δ
𝜌

𝑓
= D𝑓 (1𝛿𝜌 ∥1𝛿𝑜,𝜌 ) = 𝛿𝑜,𝜌 𝑓 (

𝛿𝜌

𝛿𝑜,𝜌
) + (1 − 𝛿𝑜,𝜌 ) 𝑓 (

1 − 𝛿𝜌
1 − 𝛿𝑜,𝜌

), (7)

where 𝑓 (·) can be an arbitrary convex function. It is noted that

given the data distribution D and the inference task 𝜌 of interest,

the optimal prior rate (1 − 𝛿𝑜,𝜌 ) is determined. Thus, an upper

bound of Δ
𝜌

𝑓
in (7) combined with a lower bound of the prior rate

(1−𝛿𝑜,𝜌 ) will lead to an upper bound of the target posterior success

rate (1 − 𝛿𝜌 ). In particular, as a special case of Theorem 1 in [46],

when we select the f-divergence to be the KL-divergence, i.e., by

selecting 𝑓 (𝑡) = 𝑡 log 𝑡 in (7), Δ
𝜌

𝐾𝐿
is shown to be bounded by the

well-known mutual information [17], as described below.

Proposition 2 ([46]). For arbitrary 𝜌 and input distribution D,

Δ
𝜌

𝐾𝐿
= 𝛿𝜌 log(

𝛿𝜌

𝛿𝑜,𝜌
) + (1−𝛿𝜌 ) log(

1 − 𝛿𝜌
1 − 𝛿𝑜,𝜌

) ≤ MI(𝑋 ;M(𝑋 )), (8)

whereMI(𝑋 ;M(𝑋 )) is themutual information between𝑋 andM(𝑋 ).

Stemmed from (8), [46] shows how to automatically determine

the minimal perturbation e for a black-box processing function F
based on high-confidence estimation on the (co-)variance of F (𝑋 ),
which ensures that its noisy versionM(𝑋 ) = F (𝑋 ) + e satisfies
provable PAC Privacy guarantees.

2.4 Proper Selection of Privacy Metric
In the previous subsections, we formally introduced three privacy

definitions. In practice, before selecting a privacy metric, one should

first determine the privacy concern of interest – which part of in-

put data 𝑋 we aim to protect. The objective could vary from an

attribute, to a data point, to relationship between datapoints. DP

puts a particular focus on individual privacy and can provide mean-

ingful guarantees especially when the release is an aggregation of

multiple individuals, for example, the network traffic when a set of

users communicate [41] or the memory pattern when one accesses

a database [14], and the goal here is to prevent the adversary from

inferring who is talking or which file is accessed. As a comparison,

MaxL is not restricted to only make an individual indistinguish-

able, but also to bound the posterior advantage for an adversary

to correctly identify the true input. Thus, MaxL can capture the

privacy leakage (adversarial reconstruction hardness) with respect

to the entire input and can be applied to study the leakage from,

for example, processing time or power consumption of a specific

program [19], where individual or attribute privacy is not meaning-

ful or well-defined. Compared to DP and MaxL, PAC Privacy offers

the most general framework to probabilistically describe inference

hardness in recovering any specified related information regarding

the secret𝑋 . However, PAC Privacy requires an a priori setup (secret
entropy), which is different from the input-independent guarantee

in DP and MaxL. In the following, we demonstrate the applicability

and operational challenges of the three frameworks.

To randomize a processing function F to satisfy DP guaran-

tees, one needs to first bound sensitivity, the worst-case change

(sup𝑋∼𝑋 ′ ∥F (𝑋 ) − F (𝑋 ′)∥ for arbitrary two adjacent datasets

𝑋 ∼ 𝑋 ′) of the output when one arbitrarily replaces a datapoint. As

mentioned before, tight sensitivity is intractable in many practical

applications, and, usually, one needs to introduce some artificial

control, such as clipping and decomposition [1], to produce a sen-

sitivity bound. As for MaxL, sensitivity analysis is not necessary,

but MaxL still requires the knowledge of likelihoods across all in-

put selections. Different from DP and MaxL, which cannot view

the underlying processing F as a black box, PAC Privacy enables

automated privatization for general inference hardness, not only
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restricted to distinguishability or identification. However, PAC Pri-

vacy requires that the secret distribution D is given or one can

repeatedly sample from D. Thus, PAC Privacy is more suitable for

statistical data processing or secret key protection, where the input

has a clear form of entropy. For example, in protecting an 𝑙-bit

secret key from cache timing attacks [7, 19, 40], the distribution D
of a random secret key 𝑋 is a uniform distribution over {0, 1}𝑙 and
thus PAC Privacy is easily applicable. However, when our secret 𝑋

cannot be sampled or does not enjoy tractable entropy, for example,

the messages in anonymous communication, input-independent

guarantees becomes the only known feasible solution.

3 A LESSON FROM BIASED NOISE –TRADEOFF
BETWEEN MEAN, VARIANCE AND CONCENTRATION

In this section, we provide some intuition on the following two

important questions: a) why existing positive noise constructions

could be sub-optimal, and b) how to construct the optimal positive

perturbation. We mainly focus on DP positive noise in this section,

but the implications of the results are general, which instruct our

following study on the optimal one-sided noise.

In prior works on mitigating side-channel leakage with DP guar-

antees, Truncated Biased Laplace (TBL) noise [6, 8, 15, 35] and its

discrete version, Truncated Geometric noise [13, 52] are among the

most-commonly used perturbations. We first take the continuous

TBL noise as the example; see definition below.

Definition 4 (Truncated Biased Laplace Noise [6]). Given
parameters 𝜇𝐿 > 0, 𝜆𝐿 > 0 and 𝑅 > 0, a (𝜇𝐿, 𝜆𝐿, 𝑅) Truncated Biased
Laplace (TBL) truncates a Laplacian distribution

Lap𝜇𝐿,𝜆𝐿 (𝑧) =
1

2𝜆𝐿
𝑒𝑥𝑝 (− |𝑧 − 𝜇𝐿 |

𝜆𝐿
) (9)

on range [0, 𝑅]. The resulted noise e has a probability distribution

P(e = 𝑧) =
1

𝑍𝜇𝐿,𝜆𝐿,𝑅
𝑒𝑥𝑝 (− |𝑧 − 𝜇𝐿 |

𝜆𝐿
) · 10≤𝑧≤𝑅 . (10)

10≤𝑧≤𝑅 is an indicator which equals 1 when 𝑧 ∈ [0, 𝑅], otherwise 0.
𝑍𝜇𝐿,𝜆𝐿,𝑅 =

∫ 𝑅
0
𝑒𝑥𝑝 (− |𝑧−𝜇𝐿 |

𝜆𝐿
)𝑑𝑧 is the normalization parameter.

The following lemma describes the (𝜇, 𝜆) selection of TBL noise

such that it can produce an (𝜖, 𝛿)-DP guarantee.

Lemma 1 (Parameter of Positive Laplace Noise). Suppose a process-
ing function F : X∗ → R such that for an arbitrary adjacent dataset
pair𝑋 ∼ 𝑋 ′, |F (𝑋 )−F (𝑋 ′) | ≤ s, i.e., the sensitivity of F is bounded
by s. Then, if we select 𝜆𝐿 = s/𝜖 , 𝜇𝐿 ≥ s + 𝑠𝜖 · log

1

2𝛿 (1−𝑒−𝜇𝐿 ·𝜖/s ) , and

𝑅 = 2𝜇𝐿 , such a (𝜇𝐿, 𝜆𝐿, 𝑅)-TBL perturbation ensures (𝜖, 𝛿)-DP.

Intuitively, TBL noise can be viewed as that we perform the fol-

lowing modifications to a standard zero-mean Laplace distribution

Lap
0,𝜆 , defined in (9). First, we shift the Lap

0,𝜆 uniformly by 𝜇 into

Lap𝜇,𝜆 ; second, we truncate its support domain from (∞,∞) to
[0, 𝑅] and normalize the remaining over [0, 𝑅]. Started from TBL

noise, we have several remarks on positive noise mechanisms and

the resultant DP guarantees, compared to the regular zero-mean

noise mechanism:

(1) 𝜖-DP is impossible and a failure probability is neces-
sary. For an arbitrary positive noise e and an arbitrary de-

terministic processing function, the respective support sets
1

of the distributions of F (𝑋 ) + e and F (𝑋 ′) + e, for 𝑋 ∼ 𝑋 ′,
F (𝑋 ) ≠ F (𝑋 ′), cannot be identical. There always exists

some subset 𝑂 such that Pr(F (𝑋 ) + e ∈ 𝑂) > 0 while

Pr(F (𝑋 ′) + e ∈ 𝑂) = 0. Once the outputs fall within 𝑂 ,

the adversary can perfectly distinguish the input between 𝑋

and 𝑋 ′, and thus an additive failure rate in a positive noise

mechanism is necessary. In TBL, to ensure such a failure

probability bounded by 𝛿 , we need to select a large enough

shift/bias 𝜇𝐿 such that the tail probability between [0, s] or
[𝑅 − s, 𝑅] is bounded by 𝛿 , where s is the sensitivity bound.

(2) Heavier Utility Loss: Consider the utility loss captured by

the second moment of the injected noise e,

E[e2] =
(
E[e]︸︷︷︸
mean

)
2 + E

[ (
e − E[e]

)
2
]︸             ︷︷             ︸

variance

. (11)

Given the positive requirement of e, E[e], the mean of e,
must be non-zero, and thus compared to the regular zero-

mean noise mechanism, in general, we need to pay an addi-

tional utility loss determined by the square of the mean, i.e.,(
E[e]

)
2

, proportional to (𝜇𝐿)2 in the case of TBL noise.

From Lemma 1, we know that TBL noise behaves as a sufficient

method to produce (𝜖, 𝛿)-DP. A natural question is whether TBL is

optimal. Before we give a complete answer in the next section, we

first show a more intuitive negative answer that TBL is not optimal

in producing a tight utility-privacy tradeoff under composition.

When we consider𝑇 -fold composition of a noisy mechanisms using

TBL, the cumulative failure probability from the tail scales with

𝑇 by union bound. Thus, to ensure (𝜖, 𝛿) after 𝑇 compositions, by

advanced composition (Proposition 1) with
˜𝛿 = 𝛿/2, it suffices to

ensure (𝜖0, 𝛿0)-DP in each round, where

𝜖0 = 𝑂 ( 𝜖√︁
2𝑇 log(2/𝛿)

), and 𝛿0 =
𝛿

2𝑇
. (12)

Thus, to ensure (𝜖0, 𝛿0)-DP by TBL noise, from Lemma 1, we may

select 𝜆𝐿 = s
𝜖0

and 𝜇𝐿 = 𝑂 (𝜆𝐿 · log
𝑇
2𝛿
+s). Consequently, the second

moment of the constructed TBL noise is

E[𝑒2] = 𝑂
(
(𝜇𝐿)2 + (𝜆𝐿)2

)
= 𝑂

(𝑇 log(1/𝛿)
𝜖2

· (log
2 (𝑇 /𝛿) +1)

)
, (13)

for constant s. It is worthwhile noting that the mean/bias of the TBL

noise e is𝑂 (log𝑇 /𝛿) times larger than its standard deviation, as un-

derlined in (13). This matches our intuition that given an𝑂 (𝑒−𝑧) de-
caying rate of Laplace distribution, only after an𝑂 (𝜆𝐿 log 1/(𝛿/𝑇 ))
length distance from its mean, can we ensure its noise tail is small

enough in𝑂 (𝛿/𝑇 ). As a comparison, we may similarly consider the

Truncated Biased Gaussian (TBG) noise, as an analog of TBL.

Definition 5 (Truncated Biased Gaussian). Given 𝜇𝐺 > 0

and 𝜆𝐺 > 0, the probability density function of a (𝜇𝐺 , 𝜆𝐺 , 𝑅) Trun-
cated Biased Gaussian (TBG) noise e is defined as

P(e = 𝑧) = 10≤𝑧≤𝑅 ·
1

𝑍𝜇𝐺 ,𝜆𝐺 ,𝑅
𝑒𝑥𝑝 (− (𝑧 − 𝜇𝐺 )

2

2𝜆2

𝐺

), (14)

1
Throughout the paper, we use support set to represent the domain for a distribution,

over which there is non-zero probability density/mass.
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where 𝑍𝜇𝐺 ,𝜆𝐺 ,𝑅 =
∫ 𝑅
0
𝑒𝑥𝑝 (− (𝑧−𝜇𝐺 )

2

2𝜆2

𝐺

)𝑑𝑧 is for normalization.

If we adopt TBG noise to produce (𝜖, 𝛿)-DP under 𝑇 composi-

tions, similarly it suffices to select 𝜆𝐺 = 𝑂 (
√
𝑇 log(1/𝛿 )

𝜖 ), 𝜇𝐺 =

𝑂 (
√︁

log(𝑇 /𝛿)𝜆𝐺 ) and 𝑅 = 2𝜇𝐺 . Then,

E[𝑒2] = 𝑂
(
(𝜇0)2 + (𝜆0)2

)
= 𝑂

(𝑇 log(1/𝛿)
𝜖2

· (log(𝑇 /𝛿) + 1)
)
. (15)

Comparing (13) with (15), we observe the following:

Square of Mean Larger than Variance: In both positive noise

mechanisms with either TBL or TBG, from (13) and (15), to ensure

a small tail in a scale 𝛿/𝑇 , the bias parameter 𝜇𝐿 (𝜇𝐺 ) needs to be
a polynomial of (log(𝑇 /𝛿)) times larger than their standard devi-

ation

√︁
𝑇 log(1/𝛿)/𝜖 , required by the regular (zero-mean) Laplace

/ Gaussian mechanism to produce the same (𝜖, 𝛿) under 𝑇 -fold
composition. Such a gap cannot be simply mitigated by a noise of

larger variance: the bias 𝜇𝐿 (𝜇𝐺 ) scales with the standard devia-

tion, controlled by 𝜆𝐺 (𝜇𝐺 ), and a larger variance only makes the

distributional decay slower, requiring an even larger mean/bias.

Concentration vs. Variance: A closer look at the underlined terms

in both (13) and (15)—which capture how many times the mean

(or bias) exceeds the standard deviation—reveals that the bias of

the TBG noise is smaller than that of the TBL noise by a factor of

𝑂 (log(𝑇 /𝛿)). This arises from the fact that the Gaussian distribution

is more concentrated. Specifically, the tail of the Gaussian decays at

a rate of 𝑂 (𝑒−𝑧2 ), compared to 𝑂 (𝑒−𝑧) for the Laplace distribution.
This faster decay enables the Gaussian mechanism to use a smaller

bias while still achieving the desired tail bound. We illustrate this

in Fig. 1 (on page 2).

Indeed, if we expand all constants in (13) and (15), we find that

the TBG mechanism requires a larger noise variance than the TBL

mechanism. This aligns with our intuition: to achieve the same

statistical divergence with a faster-decaying noise distribution, a

larger variance is necessary to compensate.

The above two observations suggest that the optimal positive

noise distribution requires a careful tradeoff between mean (bias),

variance, and concentration. To close the utility-loss gap relative to

zero-mean noise, we seek a distribution with sufficient concentra-

tion to keep the bias small, while still providing a sharp tail bound

to maintain a low failure probability (at most 𝛿/𝑇 ), guarding against
distinguishability via differences in support. At the same time, the

distribution must not be overly concentrated, which would result

in an excessively large variance.

4 POSITIVE NOISE FOR DIFFERENTIAL
PRIVACY

In this section, we systematically study the optimal positive noise

mechanism for Differential Privacy (DP). We consider a discrete

processing function F : X∗ → Y∗ ∈ Z, whose sensitivity is 1, i.e.,

for two arbitrary adjacent datasets𝑋 ∼ 𝑋 ′ ∈ X∗, sup𝑋∼𝑋 ′ |F (𝑋 ) −
F (𝑋 ′) | ≤ 1. Our goal is to determine the optimal positive noise

distribution of 𝑒 over a bounded set [0 : 𝑅] = {0, 1, · · · , 𝑅} such
that its second moment E[e2] is minimal while F (𝑋 ) + 𝑒 satisfies
an (𝜖, 𝛿)-DP guarantee (under 𝑇 -fold composition).

4.1 Optimal Positive Noise for a Single Release
We begin by examining the optimal positive noise mechanism for

(𝜖, 𝛿)-DP in a single release scenario without composition (𝑇 = 1).

We will prove the following more general conclusion: given an

(𝜖, 𝛿)-DP budget, the optimal noise distribution that minimizes the

𝑘-th moment for any 𝑘 ∈ Z+ is identical and has a closed-form
expression. Furthermore, as 𝑅 →∞, meaning that even if there is

no bounded restriction for the noise 𝑒 , the optimal positive noise

distribution remains inherently bounded. To be formal, we use P𝑒 =
{𝑝0, 𝑝1, · · · } to denote the noise distribution where 𝑝𝑖 = Pr(𝑒 = 𝑖).
The 𝑘-th moment of 𝑒 is defined as E[𝑒𝑘 ] = ∑∞

𝑖=0
𝑖𝑘 · 𝑝𝑖 .

Theorem 1 (Optimum for Single Release). Given a processing func-
tion F of sensitivity 1, among all possible distributions of a positive
noise e over [0, +∞) which ensure an (𝜖, 𝛿)-DP guarantee of the noisy
version F (·) + e, the following distribution with probability mass
function given in (1) below,

𝑝𝑖 =

{
𝛿 · 𝑒𝜖𝑖 if 𝑖 < 𝜔
𝛿 · 𝑐 · 𝑒𝜖 (2𝜔−𝑖 ) if 𝜔 ≤ 𝑖 ≤ 𝜔 ′,

(16)

is in a sense that it achieves the minimal 𝑘-th moment, for any positive
integer 𝑘 . Here, 𝜔 ′ is either 2𝜔 − 1 or 2𝜔 , and 𝑐 ∈ [𝑒−2𝜀 , 1] is for
normalization such that the sum of 𝑝𝑖 equals 1. Here, 𝜔 is a turning
point, defined as

𝜔 =
1

𝜖
· log( 2

𝑒𝜖 + 1

+ 𝑒𝜖 − 1

𝛿 (𝑒𝜖 + 1) ) . (17)

The proof of Theorem 1 is in Appendix B. We provide some

insights on how the parameters 𝜔,𝜔 ′ and 𝑐 are determined. For

given 𝜔 , we consider the following sequence {𝑝𝑖 (𝜔)} in a staircase:

𝑝𝑖 (𝜔) =
{
𝛿 · 𝑒𝜖𝑖 if 𝑖 < 𝜔

𝛿 · 𝑒𝜖 (2𝜔−𝑖 ) if 𝜔 ≤ 𝑖 ≤ 2𝜔.
(18)

(18) is the ideal noise shape to ensure an 𝜖-multiplicative difference

given sensitivity 1. To further ensure 𝑝𝑖 (𝜔) is a valid probability

mass, we need to select 𝜔 such that 𝑆 (𝜔) = ∑
2𝜔
𝑖=0

𝑝𝑖 (𝜔) = 1. How-

ever, 𝑆 (𝜔) = 1 may not have integer solutions, and we address this

by setting 𝜔 = min{𝜔 ′ ∈ Z+ | 𝑆 (𝜔 ′) ≥ 1}, and introduce a scaling

parameter 𝑐 ∈ (0, 1] to normalize 𝑝𝑖 for 𝑖 ∈ [𝜔, 2𝜔]. If 𝑐 < 𝑒−2𝜖
,

the (𝜖, 𝛿)-DP guarantee can no longer be maintained. In such cases,

we adjust the upper bound of 𝑖 from 2𝜔 to 2𝜔 − 1, ensuring that

𝑐 ≥ 𝑒−2𝜖
. We prove optimality of above selections in Appendix B.

As a summary, Theorem 1 suggests that given a range restriction

𝑅, either no noise distribution within [0, 𝑅] can ensure the (𝜖, 𝛿)-DP
requirement, or the optimal P𝑒 must be supported on [0, 𝑅0] for
some 𝑅0 ≤ 2𝜔 ≤ 𝑅, with 𝜔 defined in (17).

4.2 Hybrid Rényi DP (HRDP)
In the previous section, we have studied the optimality of positive

noise for (𝜖, 𝛿)-DP in a single iteration. The analysis becomes more

involved when we need to further consider composition. Although

we introduced advanced composition of (𝜖, 𝛿)-DP in Proposition

1 but we need to mention that (2) is not perfectly tight (both in

constants and asymptotically, if we do not ignore the logarithm term

[20]). This is especially true when we have additional information

on the output distribution ofM(𝑋 ). For example, when the noise
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is Gaussian [1], it is known that the (𝜖, 𝛿) metric does not fully

characterize the statistical difference betweenM(𝑋 ) andM(𝑋 ′)
to produce the tightest composition. To this end, more involved

DP definitions or accounting methods are proposed, such as zero-

concentrated DP [10] and Rényi DP [32], which are both established

based on Rényi divergence. We formally define Rényi DP as follows.

Definition 6 (Rényi Differential Privacy [32]). A random-
ized algorithmM satisfies (𝛼, 𝜖 (𝛼))-Rényi DP (RDP), for some 𝛼 > 1,
if for any pair of adjacent datasets 𝑋 ∼ 𝑋 ′, D𝛼 (PM(𝑋 ) ∥PM(𝑋 ′ ) ) ≤
𝜖 (𝛼) . Here, PM(𝑋 ) and PM(𝑋 ′ ) represent the distributions ofM(𝑋 )
andM(𝑋 ′), respectively, and

D𝛼 (P∥Q) =
1

𝛼 − 1

log

∫
q(𝑦) ( p(𝑦)

q(𝑦) )
𝛼 𝑑𝑦, (19)

represents 𝛼-Rényi Divergence between two distributions P and Q
whose density functions are p and q, respectively.

When the output domain Y∗ ofM is discrete, one can simply

replace the integral in (19) by summation over elements 𝑦 ∈ Y∗
to obtain the discrete RDP version. RDP can be used to elegantly

handle the composition of privacy leakage and enables a simple

conversion to (𝜖, 𝛿)-DP, as characterized below.

Proposition 3 (RDP Composition and Conversion to (𝜖, 𝛿) DP [32]).
For any 𝛼 > 1, the class of (𝛼, 𝜖0 (𝛼))-RDPmechanisms satisfies (𝜖, 𝛿)-
differential privacy under 𝑇 -fold adaptive composition for any 𝜖 and
𝛿 such that

𝜖 ≥ 𝑇𝜖0 (𝛼) − log(𝛿)/(𝛼 − 1) . (20)

Unfortunately, RDP cannot be directly applied to handle positive

noise mechanisms. As demonstrated in Section 3, with one-sided

or bounded noise, the support domains of the output distributions

produced by two adjacent datasets, PM(𝑋 ) and PM(𝑋 ′ ) , cannot
be exactly the same: there always exists some 𝑦 within the sup-

port set ofM(𝑋 ) but beyond the support set ofM(𝑋 ′) such that

P
(
M(𝑋 ) = 𝑦

)
≠ 0 while P

(
M(𝑋 ′) = 𝑦

)
= 0, which leads to an un-

bounded ratio P(M(𝑋 ) = 𝑦)/P(M(𝑋 ′) = 𝑦) = ∞ for two adjacent

datasets 𝑋 and 𝑋 ′. Thus, the 𝛼 Rényi divergence

EM(𝑋 ′ )
( P(M(𝑋 ))
P(M(𝑋 ′))

)𝛼
=

∫ ∞

−∞

(
P(M(𝑋 ) = 𝑦)

)𝛼(
P(M(𝑋 ′) = 𝑦)

)𝛼−1
𝑑𝑦 (21)

is not well-defined and Proposition 3 is not applicable. To this end,

we present a generalization by computing the composition under

positive noise in a hybrid form. The high-level idea is to measure

the likelihood divergences separately in two cases: the part over the

common (overlapped) support set is still measured through Rényi

divergence while the remainder is controlled by a failure rate.

We consider an arbitrary processing function perturbed by some

one-sided noise, denoted byM : X∗ → Y∗. For an input set 𝑋 , we

use 𝑆𝑑 (𝑋 ) ⊂ Y∗ to denote the subset of all degenerate events:

𝑆𝑑 (𝑋 ) =
{
𝑦 | P(M(𝑋 ) = 𝑦) = 0

}
. (22)

Accordingly, we define Partial
(
𝛼,R𝛼,𝑝 (𝑋,𝑋 ′)

)
-Rényi Divergence

(PRD) for two adjacent datasets 𝑋 ∼ 𝑋 ′ as follows,

R𝛼,𝑝 (𝑋,𝑋 ′) =
1

𝛼 − 1

log

∫
𝑦∈Y∗/𝑆𝑑 (𝑋 ′ )

P(M(𝑋 ) = 𝑦)𝛼

P(M(𝑋 ′) = 𝑦)𝛼−1
𝑑𝑦.

(23)

Comparing (23) and (19), PRD only measures the divergence within

the subset Y∗/𝑆𝑑 (𝑋 ′) where P(M(𝑋 ) = 𝑦) > 0. In the following,

we present Hybrid RDP (HRDP) to capture the cumulative privacy

risk accounting for the release bothwithin or outside the degenerate

set 𝑆𝑑 . We formally define (𝛼, 𝜖𝛼,𝑝 , 𝛿𝑝 )-HRDP as follows.

Definition 7 (Hybrid RDP). A mechanismM : X∗ → Y∗ ⊂
R𝑑 satisfies (𝛼, 𝜖𝛼,𝑝 , 𝛿𝑝 )-HRDP if for arbitrary two adjacent datasets
𝑋 and 𝑋 ′, the degenerate events are bounded as

sup

𝑋,𝑋 ′
Pr

(
M(𝑋 ′) ∈ 𝑆𝑑 (𝑋 )

)
≤ 𝛿𝑝 ;

and their PRD defined in (23) is also bounded as

sup

𝑋,𝑋 ′
R𝛼,𝑝 (𝑋,𝑋 ′) ≤ 𝜖𝛼,𝑝 .

Theorem 2 (HRDP Composition). For 𝑇 mechanisms M𝑖 , 𝑖 =

1, 2, · · · ,𝑇 where each M𝑖 satisfies (𝛼, 𝜖 (𝑖 )𝛼,𝑝 , 𝛿
(𝑖 )
𝑝 )-HRDP, the com-

position ofM[1:𝑇 ] satisfies (𝜖, 𝛿)-DP such that for any 𝛿 ′ > 0,

𝜖 ≥
𝑇∑︁
𝑖=1

𝜖
(𝑖 )
𝛼,𝑝 +

log(1/𝛿 ′)
𝛼 − 1

, and 𝛿 ≥
𝑇∑︁
𝑖=1

𝛿
(𝑖 )
𝑝 + 𝛿 ′ . (24)

The proof of Theorem 2 can be found in Appendix C. Compared

to the regular composition of RDP described in Proposition 3, The-

orem 2 demonstrates the following generalization: one can still

apply partial Rényi divergence R𝛼,𝑝 (𝑋,𝑋 ′) between PM(𝑋 ) and
PM(𝑋 ′ ) over the non-degenerate domain Y∗/𝑆𝑑 (𝑋 ′), captured by

𝜖
(𝑖 )
𝛼,𝑝 , to bound 𝜖 in (24); on the other hand, the probability over the

degenerate set 𝑆𝑑 (𝑋 ′), captured by 𝛿
(𝑖 )
𝑝 , is simply additive to the

global failure rate 𝛿 .

For the discrete case, one can simply replace the integral in (23)

by a summation and Theorem 2 still holds. As a final remark, the

idea in Theorem 2 can be generalized to other composition ac-

counting methods, for example, through the characteristic function

[53], where we can similarly analyze the moment function over

degenerate and non-degenerate domains, respectively.

4.3 Noise Optimization with Composition
With HRDP, now, we have a more powerful tool and a clearer

characterization to handle the DP composition of general noise

mechanisms. Given the objective global 𝜖 and 𝛿 bound in (24), re-

spectively, a natural idea to determine the optimal noise distribution

is to minimize (24) given the budget on 𝛿 , second moment 𝐵 and

maximal magnitude restriction 𝑅. However, one remaining obstacle

here is that we need to specify the degenerate set 𝑆𝑑 in the first

place: the objective (24) varies with different selections of 𝑆𝑑 . To

address this, the following lemma provides a clearer picture on the

concentration of the optimal positive noise distribution.

Lemma 2 (Contiguous Support Set). To achieve (𝜖, 𝛿)-DP under
𝑇 -fold composition, the optimal bounded positive noise 𝑒 ∈ [0, 𝑅]
with the minimal second moment must satisfy the following property:
Pr(𝑒 = 0) > 0 and if there exists some 𝑢 such that Pr(𝑒 = 𝑢) = 0,
then Pr(𝑒 ≥ 𝑢) = 0.

The proof of Lemma 2 can be found in Appendix D. Lemma 2

states the following fact: the probability mass of optimal positive

noise must be consecutively assigned along some interval [0, 𝑅0]
for 𝑅0 ≤ 𝑅. To be specific, for a given 𝑅0, let P𝑅0

= {𝑝0, 𝑝1, · · · 𝑝𝑅0
}
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denote a noise distribution 𝑒 supported over {1, 2, · · · , 𝑅0}, where
Pr(𝑒 = 𝑖) = 𝑝𝑖 . When sensitivity equals 1, in this discrete setup, the

output distributions produced by two adjacent datasets 𝑋 and 𝑋 ′

are either identical or differ by a ±1 shift, and without loss of gen-

erality, we assume 𝑆𝑑 (𝑋 ) = {𝑝𝑅0
} and 𝑆𝑑 (𝑋 ′) = {𝑝0}. Therefore,

by Lemma 2, the bound of 𝜖 in (24) can be equivalently expressed

as a function 𝐻 (𝑅0, P𝑅0
) of 𝑅0 and P𝑅0

:

𝐻 (𝑅0, P𝑅0
) = 1

𝛼 − 1

max{𝑇 log

𝑅0∑︁
𝑖=1

(𝑝𝑖 )𝛼

(𝑝𝑖−1)𝛼−1
+ log( 1

𝛿 −𝑇𝑝0

),

𝑇 log

𝑅0∑︁
𝑖=1

(𝑝𝑖−1)𝛼

(𝑝𝑖 )𝛼−1
+ log( 1

𝛿 −𝑇𝑝𝑅0

)}.

𝐻 (𝑅0, P𝑅0
) captures the worst case of HRDP by taking the max-

imal of 𝜖𝛼,𝑝 (𝑋,𝑋 ′) with 𝑝0 and 𝜖𝛼,𝑝 (𝑋 ′, 𝑋 ) with 𝑝𝑅0
. Therefore,

we transform determining the optimal noise distribution into the

following constrained optimization,

min

𝑅0

min

P𝑅
0

𝐻 (𝑅0, P𝑅0
), (25)

s.t.

𝑅0∑︁
𝑖=1

𝑝𝑖 = 1, 0 < 𝑝𝑖 < 1, 𝑖 = 1, 2, · · · , 𝑅0, (26)

0 < 𝑅0 ≤ 𝑅,
𝑅0∑︁
𝑖=0

𝑖2 · 𝑝𝑖 ≤ 𝐵2, 𝑝0 <
𝛿

𝑇
, 𝑝𝑅0

<
𝛿

𝑇
. (27)

In (26) and (27), we describe the constraints: (26) ensures that P𝑅0

is a distribution; (27) ensures that 𝑒 is supported within [0, 𝑅] and
the second moment of P𝑅0

is bounded by 𝐵2
, and the probability

of degenerate events 𝑆𝑑 is bounded by 𝛿/𝑇 . However, (25) is not
directly solvable since as the selection of range 𝑅0 varies, both

the form of objective 𝐻 (𝑅0, P𝑅0
) and the constraints (26) and (27)

change, due to a different 𝑝𝑅0
in 𝑆𝑑 . To address this, we consider

decomposing the original optimization over 𝐻 (𝑅0, P𝑅0
) into the

optimization over the tail and 𝑅0, respectively. We first consider the

optimization on 𝐻 (𝑅0, P𝑅0
) restricted to noise distributions with

fixed 𝑅0, leftmost 𝛿𝑙 and rightmost 𝛿𝑟 tails. We introduce

D(𝛿𝑙 , 𝛿𝑟 , 𝐵, 𝑅0) = {P𝑅0
:

𝑅0∑︁
𝑖=0

𝑖2𝑝𝑖 ≤ 𝐵2, 𝑝0 = 𝛿𝑙 , 𝑝𝑅0
= 𝛿𝑟 },

to capture the set of distributions supported on [0 : 𝑅0] with second
moment bound 𝐵 and fixed 𝑝0 = 𝛿𝑙 and 𝑝𝑅0

= 𝛿𝑟 .

Theorem 3 (Efficiency of Algorithm 1). Given selections of 𝛿𝑙 , 𝛿𝑟
and 𝑅0, minimization of 𝐻 (𝑅0, P𝑅0

) is equivalent to minimizing

max

{( 𝑅0∑︁
𝑖=1

(𝑝𝑖 )𝛼

(𝑝𝑖−1)𝛼−1

)
,
( 𝑅0∑︁
𝑖=1

(𝑝𝑖−1)𝛼

(𝑝𝑖 )𝛼−1

)}
,

which is convex with respect to P𝑅0
. In addition, given 𝑅0 and P𝑅0

,
𝐻 (𝑅0, P𝑅0

) is also convex with respect to 𝑝0 and 𝑝𝑅0
, respectively.

The proof can be found in Appendix E. The above theorem demon-

strates the following facts:

(a) Given 𝛿𝑙 , 𝛿𝑟 and 𝑅0, minimizing 𝐻 (𝑅0, P𝑅0
) for P𝑅0

∈ D
(𝛿𝑙 , 𝛿𝑟 , 𝐵, 𝑅0) is a convex optimization over a convex con-

straint set D(𝛿𝑙 , 𝛿𝑟 , 𝐵, 𝑅0).
(b) Given 𝑅0 and P𝑅0

, 𝐻 (𝑅0, P𝑅0
) is convex w.r.t. the leftmost

and rightmost slot 𝑝0 and 𝑝𝑅0
.

Figure 2: Second moment and maximal magnitude compari-
son between different positive DP noises and accounting.

.

To efficiently approximate the optimal noise distribution, we con-

sider fixing 𝑅0 = 𝑅 and utilizing the convexity shown in Theorem 3

to propose a two-layer algorithm to alternatively optimize (𝛿𝑙 , 𝛿𝑟 )
and P𝑅 , as Algorithm 1.

4.4 Experiments and Comparisons
In this subsection, we set out to produce a set of experiments to show

the power of both hybrid RDP (HRDP) accounting (Theorem 2) and

optimized noise distribution (Algorithm 1). In practice, the second

moment budget 𝐵 and the maximal magnitude 𝑅 of noise 𝑒 capture

the expected additional overhead and the worst-case redundancy

required, respectively. For example, in anonymous communication

[39, 41] or database operations [8, 14], 𝐵 and 𝑅 correspond to the

expected and maximal dummy messages sent or files written. In

Fig. 2(a), under𝑇 = 500 compositions, we show the required second
moment E[e2] of positive noise to produce (𝜖, 𝛿)-DP with 𝛿 fixed

to be 10
−5

in the following three scenarios: 1) by discrete TBL

noise in Definition 4 [8, 14, 41, 52] using advanced composition

(Proposition 1); 2) still by discrete TBL noise, but using HRDP for

composition accounting (Theorem 2); 3) the optimized noise based

on HRDP and Algorithm 1. The (1,2,3) cases are captured by the

red, blue and green lines, respectively. With a similar setup, in Fig.

2(b), we consider a scenario with more compositions 𝑇 = 1, 000

and also a smaller failure rate budget 𝛿 = 10
−8
. Comparing Case

1) (red line) and Case 2) (blue line), we can see HRDP produces a

tighter composition bound. Additionally, when we compare Case

2) (blue line) and Case 3) (green line), it can be seen that after

optimization, we significantly improve the noise to produce the

same (𝜖, 𝛿) parameter: the second moment of optimized noise is

around 10× and 20× smaller than that of TBL in Fig. 2(a) and (b),

respectively. Such improvement is more significant with a larger

composition 𝑇 and a smaller privacy budget (𝜖, 𝛿).
With the same setup as Fig. 2(a,b), in Fig. 2(c,d), we consider the

required maximal magnitude 𝑅 for different noises with different

accounting methods. Similarly, after optimization, one may find a

better noise distribution accommodated in a larger interval with



One-Sided Bounded Noise CCS ’25, October 13-17, Taipei, Taiwan

Algorithm 1 Optimized Positive Noise for Hybrid RDP

1: Input: Second moment budget 𝐵, range restriction 𝑅, composi-

tion number 𝑇 , failure probability budget 𝛿 .

2: Randomly initialize both tail rate 𝛿𝑙 , 𝛿𝑟 ∈ (0, 𝛿/𝑇 ), and accord-

ingly initialize P𝑅 ∈ D(𝛿𝑙 , 𝛿𝑟 , 𝐵, 𝑅).
3: Alternately run convex optimizer on (𝛿𝑙 , 𝛿𝑟 ) with respect to

the loss function 𝐻 (𝑅, P𝑅) with updated P𝑅 , and on P𝑅 with

respect to the loss function 𝐻 (𝑅, P𝑅) given updated (𝛿𝑙 , 𝛿𝑟 )
such that 𝛿𝑙 , 𝛿𝑟 ∈ (0, 𝛿/𝑇 ), until they converge.

4: Output: P𝑅 .

a weaker requirement on 𝑅. Compared to TBL noise, the maximal

magnitude of optimized noise required is generally 5× smaller in

these two examples. To give a more concrete example, we con-

sider the same setup in the anonymous communication protocol

Vuvuzela [41], where each user has a 𝑇 = 250, 000 message budget

(composition) for a global budget 𝜖 = log(2), 𝛿 = 10
−4
. By TSL

noise and advanced composition [41], the expected and the worst-

case number of dummy messages sent per communication round is

300K and 600K, respectively, with an end-to-end additional latency

around 18.4 seconds. As a comparison, by selecting a much smaller

𝑅 = 30, 000 in Algorithm 1, the optimized noise requires only 14K

and 30K messages on average and in the worst case, respectively,

with latency shortened to 1 second.

5 POSITIVE NOISE FOR MAXIMAL LEAKAGE
5.1 Theory and Algorithm
In this section, we study the optimal positive perturbation for the

MaxL measure. We consider a deterministic function F : X∗ =

{𝑋1, 𝑋2, · · · , 𝑋𝑛} → Y∗ = {1, 2, · · · ,𝑚}, whose input domain X∗
is formed by𝑚 possible selections and the output domain, capturing

the information leakage, has𝑛 states. A state inY∗ of larger number

(shortened to higher state in the following) has higher overhead, for

example, taking a longer processing time, producing more cache

misses or requiring a larger memory.

To randomize F with positive noise, we consider the random-

ized version of F , denoted by RF , where similarly RF : X∗ =

{𝑋1, 𝑋2, · · · , 𝑋𝑛} → Y∗ = {1, 2, · · · ,𝑚}. It is noted that an arbi-

trary (either deterministic or randomized) processing function can

always be represented by a transition matrix P𝑛×𝑚 , where the en-

try at the crossing of the 𝑖-th row and 𝑗-th column (denoted as

𝑝𝑖 𝑗 ∈ [0, 1]) represents the probability that we map 𝑋𝑖 to the 𝑗-th

state in the output domainY∗. The positive perturbation constraint

requires that the support set of RF (𝑋𝑖 ) is within [F (𝑋𝑖 ),𝑚].
To provide more intuition, we illustrate the corresponding tran-

sition matrix P𝑛×𝑚 for the original processing function F and its

positively perturbed version RF , in Fig. 3(a) and Fig. 3(c), 3(d),

respectively. We consider an example when 𝑛 =𝑚 = 7, and in Fig.

3, each orange box represents a non-zero probability 𝑝𝑖 𝑗 to map 𝑋𝑖
to the 𝑗-th state. Adding positive noise is intuitively "decomposing"

and "moving" the orange boxes in Fig. 3(a) to the right hand side. In

Fig. 3(c) and 3(d), we give two positive perturbation schemes. For

example, in Fig. 3(c), F (𝑋1) = 1 (corresponding to 𝑝11 = 1), and for

a feasible positive perturbation, RF is only allowed to map 𝑋1 to

higher states, starting from 1 to 7. The perturbed RF version in

(a) Original processing output distribution (b) Optimal deterministic processing for

log(3)-MaxL

(c) Water-filled perturbation of original

processing for log(3)-MaxL

(d) Water-filled perturbation of original

processing for log(3.5)-MaxL

Figure 3: Illustration by transition matrix P𝑛×𝑚 : X∗ → Y∗
for positive noise perturbation in Maximal Leakage (MaxL)

Fig. 3(c) changes the mapping of 𝑋1 from state 1 to 2; in Fig. 3(d),

the solution becomes that with 0.5 probability RF (𝑋1) = 1 and

with 0.5 probability RF (𝑋1) = 2.

As defined in (4), the MaxL privacy leakage is measured as

L(𝑋 → 𝑌 ) = log

∑
𝑦∈Y∗ max𝑥∈X∗ P(𝑌 = 𝑦 |𝑋 = 𝑥) which equals

log

( ∑𝑚
𝑗=1

max𝑖 𝑝𝑖 𝑗
)
. Given the transition matrix P𝑛×𝑚 , it can be

viewed as the logarithm of the sum of the maximal element 𝑝𝑖 𝑗
in each column. In the following, we formalize the cost to pro-

duce a mechanism with a satisfied MaxL loss. We introduce an

𝑛 ×𝑚 cost matrix C𝑛×𝑚 where each entry 𝑐𝑖 𝑗 represents the cost

of mapping 𝑋𝑖 to the 𝑗-th output state. Under the positive noise

restriction, 𝑐𝑖 𝑗 = ∞ for 𝑗 < F (𝑋𝑖 ), i.e., the cost of mapping 𝑋𝑖 to

lower states compared to the original F (𝑋𝑖 ) is formidably large. In

addition, we also assume that for any fixed 𝑖 , 𝑐𝑖 𝑗 for 𝑗 ≥ F (𝑋𝑖 ) is in
a non-decreasing order, i.e., the cost to the higher states is more ex-

pensive. Putting the privacy risk and the cost together, determining

the optimal perturbation translates to the following constrained

optimization problem on transition matrix P = {𝑝𝑖 𝑗 }𝑛×𝑚 :

min

P
𝐶 (P) =

𝑛∑︁
𝑖=1

𝑞𝑖

𝑚∑︁
𝑗=1

𝑐𝑖 𝑗𝑝𝑖 𝑗 s.t. log

( 𝑚∑︁
𝑗=1

max

𝑖
𝑝𝑖 𝑗

)
≤ log(𝑣) .

(28)

Here, 𝑞𝑖 is the prior distribution of𝑋𝑖 , which captures the frequency

that 𝑋𝑖 is selected in the processing F .
Before we introduce our main results to determine the optimum

of (28), we need to point out a special case of RF with deterministic

modifications to F . In general, to ensure log(𝑣)-MaxL for an integer

𝑣 ≥ 1, a sufficient method is to simply select 𝑣 states in Y∗ and
ensure that the support set of RF on any 𝑋𝑖 is within them. An

example is illustrated in Fig. 3(b), where we select 𝑣 = 3 columns
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(states {2, 5, 7}) of the transition matrix P𝑛×𝑚 and define an RF
whichmaps𝑋𝑖 to the closest higher state {2, 5, 7} compared toF (𝑋𝑖 )
(see Fig. 3(b)). For example, F (𝑋1) = 1 moves to the closest higher

state selected RF (𝑋1) = 2; F (𝑋4) = 4 becomes RF (𝑋4) = 5.

The idea of finding the closest higher state can be further gen-

eralized into a water-filling operation and the representation of

the optimal processing scheme can be further simplified from a

transition matrix P𝑛×𝑚 to an𝑚-dimensional vector
¯P𝑚 , as studied

in [44]. Let
¯P𝑚 = (𝑝1, 𝑝2, · · · , 𝑝𝑚), where 𝑝 𝑗 represents the upper

bound of 𝑝𝑖 𝑗 in the 𝑗-th column.
¯P𝑚 ensures log

∑𝑚
𝑗=1

𝑝 𝑗 -MaxL. We

say that
¯P𝑚 dominates a transition matrix P𝑛×𝑚 iff 𝑝𝑖 𝑗 ≤ 𝑝 𝑗 for

any 𝑖, 𝑗 . Given a selection of
¯P𝑚 , for all transition matrices domi-

nated by
¯P𝑚 , the one minimizing the cost function (28) must be in

a water-filling form, i.e., starting from the state F (𝑋𝑖 ), the optimal

mechanism would iteratively fill the 𝑗-th slot up to probability 𝑝 𝑗
for 𝑗 = F (𝑋𝑖 ), F (𝑋𝑖 ) + 1, · · · ,𝑚, until the sum

∑
𝑗 𝑝𝑖 𝑗 becomes 1.

A formal statement and conclusion is given as follows.

Proposition 4 (Water-filling Lemma [44]). Among all mechanisms
with transition matrix P = {𝑝𝑖 𝑗 |𝑖 ∈ [1 : 𝑛]; 𝑗 ∈ [1 :𝑚]} dominated
by ¯P𝑚 = (𝑝1, 𝑝2, · · · , 𝑝𝑚), the optimal one with the minimal cost is in
the following form: for any 𝑖 and 𝑗 , 𝑝𝑖 𝑗 = min{𝑝 𝑗 , 1−

∑𝑗−1

𝑘=F(𝑋𝑖 ) 𝑝𝑘 }.

Thus, the
¯P𝑚 for a deterministic mechanism must be a binary vec-

tor and in particular, if we restrict a feasible positively perturbed

RF to be deterministic for 𝑣-MaxL for some integer 𝑣 ≥ 1, it is

equivalent to selecting 𝑣 states, denoted by A = {𝑎1, 𝑎2, · · · , 𝑎𝑣},
between min𝑖 F (𝑋𝑖 ) and max𝑖 F (𝑋𝑖 ) and sets 𝑝 𝑗 = 1 for 𝑗 ∈ A and

it is noted that max𝑖 F (𝑋𝑖 ) must be selected in A.. Therefore, de-

termining the optimal deterministic solution for log(𝑣)-MaxL with

an integer 𝑣 is reduced to searching over all 𝑣-subsets of states with

Proposition 4 and comparing their optimal water-filling schemes.

A formal definition is given below.

Definition 8 (Optimal Deterministic Scheme for Integer 𝑣).

When 𝑣 ∈ Z+, we define DS𝑣 as the set of the deterministic scheme(s)
that achieve the minimal cost conditioned on log(𝑣)-MaxL.

With the above understanding, there are still two remaining

challenges to fully characterize the optimal positive perturbation

for MaxL. First and more fundamentally, even when 𝑣 is integer, is

the optimal deterministic scheme also the global optimum for all

(possibly randomized) schemes, and for general 𝑣 , is the optimal

solution related to the optimal deterministic schemes in some way?

Second, enumeration-based searching takes 𝑂 (𝑛 ·
(𝑚
𝑣

)
) time. Can

we more efficiently determine the optimal scheme? We will answer

both questions affirmatively in the following.

Theorem 4 (Optimal Perturbation for MaxL). When 𝑣 is some
positive integer, the optimal solution(s) to (28) are exactly DS𝑣 . When
𝑣 = ⌈𝑣⌉ −𝜆 for 𝜆 ∈ (0, 1) is not an integer, then the optimal solution(s)
to (28) is the linear interpolation of DS⌊𝑣⌋ and DS⌈𝑣⌉ as,

𝜆 · DS⌊𝑣⌋ + (1 − 𝜆) · DS⌈𝑣⌉
= {𝜆 · P⌊𝑣⌋ + (1 − 𝜆) · P⌈𝑣⌉ | P⌊𝑣⌋ ∈ DS⌊𝑣⌋ , P⌈𝑣⌉ ∈ DS⌈𝑣⌉ }.

Theorem 4, with proof in Appendix F, is an improvement of

the results in [44] and states the following facts. For log(𝑣)-MaxL

with integer 𝑣 , the optimal solution should be deterministic and in

DS𝑣 . For log(𝑣)-MaxL with non-integer 𝑣 , both the cost function

and the privacy function are linear with respect to the elements in

DS⌊𝑣⌋ and DS⌈𝑣⌉ , and the optimal solution is in a weighted average

of two arbitrary deterministic solutions from DS⌊𝑣⌋ and DS⌈𝑣⌉ ,
respectively. Theorem 4 also paves the path to efficiently determine

the optimal solution, where it suffices to find optimal deterministic

schemes in DS𝑣 (or DS⌊𝑣⌋ and DS⌈𝑣⌉ ). This is solvable by dynamic

programming in 𝑂 (𝑛 ·𝑚2) time.

To be specific, we introduce T (𝑖, 𝑘) (sub-algorithm 2 in Al-

gorithm 2) that considers the optimal deterministic mechanism

when (1) 𝑝1, · · · , 𝑝𝑖−1 are given and 𝑝𝑖−1 = 1; and (2)

∑𝑚
𝑗=𝑖 𝑝 𝑗

equals 𝑘 . This condition means that given the current selection

of 𝑝1, · · · , 𝑝𝑖−1, we still need to pick 𝑘 additional states within

[𝑎 :𝑚]. Note that there are totally 𝑛 ·𝑚 possible inputs for T (·, ·).
For any T (𝑖, 𝑘) such that 𝑘 > 0, we consider the next state to select

in the optimal scheme, i.e., the minimal 𝑗 ≥ 𝑖 such that 𝑝 𝑗 = 1.

Once 𝑗 is given, T (𝑖, 𝑘) is reduced to the sub-problem T ( 𝑗, 𝑘 − 1).
This means that T (𝑖, 𝑘) can be solved once we solve T ( 𝑗, 𝑘 − 1)
for all 𝑗 ≥ 𝑖 . Therefore, we can use dynamic programming to solve

the problem and the time complexity is 𝑂 (𝑛 ·𝑚2), as detailed in

Appendix G.

As an illustration, in Fig. 3(c) and 3(d), we show the optimal

positively-perturbed scheme with minimal cost minP𝐶 (P) for 𝑣 = 3

and 𝑣 = 3.5 when we select the prior distribution 𝑞𝑖 = 1/𝑛 to be

uniform and 𝑐𝑖 𝑗 = 𝑗 if 𝑗 ≥ F (𝑋𝑖 ), otherwise 𝑐𝑖 𝑗 = ∞.

5.2 Applications: AES Secret Key Protection
We provide a concrete application of Algorithm 2 to determine the

optimal perturbation scheme to control the MaxL of cache leakage

when implementing AES in an S-box implementation [4]. We adopt

the same setup and evaluation method as in Metior (more details

can be found in Section 7 of [19]). Described in MaxL language, we

consider U∗ to be a 256-bit secret key space, i.e., U∗ = {0, 1}256
.

X∗ corresponds to the intermediate number of distinct cache lines

the program touches [12]. Finally, the observation 𝑦 ∈ Y∗ captures
the number of misses. We use Metior [19] to determine both the

prior distribution on X∗ and the mapping from X∗ to Y∗. Based
our evaluation in this example, X∗ is formed by 370 intermediate

states and Y∗ = {1, 2, · · · , 38}, i.e., the maximal number of misses

is bounded by 38 in all cases. In Fig. 4(a), we consider two kinds

of cost functions C𝑛×𝑚 . The black line corresponds to the case

where 𝑐𝑖 𝑗 = 𝑗 if 𝑗 ≥ F (𝑋𝑖 ) otherwise 𝑐𝑖 𝑗 = ∞, which takes the

expected number of misses as the cost. The blue line captures the

case where 𝑐𝑖 𝑗 = 𝑗 − F (𝑋𝑖 ) if 𝑗 ≥ F (𝑋𝑖 ) otherwise 𝑐𝑖 𝑗 = ∞, which
captures the expected number of additional misses. As illustrated

by Fig. 4(a), for log(𝑣)-MaxL, the optimal cost minP C(P) is linear
when 𝑣 ∈ [⌊𝑣⌋, ⌈𝑣⌉]. Moreover, as 𝑣 increases, the cost decreases

and approaches that of the original processing function. To further

interpret the results, it is noted that the prior success rate for an

adversary to correctly identify a 256-bit secret key is 2
−256

. From

Fig. 4 we show that at a minimal cost of 6.8 and 1 dummy misses on

average, the adversarial posterior success rate to correctly recover

the secret key after observing the leakage is bounded, negligibly,

by 2
−253

and 2
−245

, respectively.

Finally, we want to emphasize that proposed Algorithm 2 is the

first efficient algorithm to provably determine the optimal scheme in

MaxL; prior works either only measure the MaxL of some heuristic
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Algorithm 2 Optimal Mechanism for Maximal Leakage

1: Input: Objective processing function F : X∗ =

{𝑋1, 𝑋2, · · · , 𝑋𝑁 } → {1, 2, · · · ,𝑚}, prior distribution PX∗ of
input over X∗ where 𝑝𝑖 = Pr(𝑋 = 𝑋𝑖 ); cost weight 𝑐𝑖 𝑗 of map-

ping 𝑋𝑖 to the state 𝑗 ; objective MaxL budget log(𝑣).
2: if 𝑣 is integer then
3: Run Sub-algorithm 1 to determine the optimal deterministic

mechanismMD (𝑣) and outputMD (𝑣).
4: else
5: Run Sub-algorithm 1 to determine the respective optimal

deterministic mechanismsMD (⌊𝑣⌋) andMD (⌈𝑣⌉).
6: Let 𝜆 = ⌈𝑣⌉ − 𝑣 .
7: Output 𝜆MD (⌊𝑣⌋) + (1 − 𝜆)MD (⌈𝑣⌉).
8: end if

Sub-algorithm 1: Optimal Deterministic MechanismMD . Takes
as input an integer 𝑘 = 𝑣 and returns the optimal deterministic

mechanism in vector form.

1: if 𝑘 = 1 then
2: Returns (0, 0, · · · , 0, 1), which allocates all input to𝑚.

3: else
4: Initialize 𝑖 ← 0 and 𝑝 ← (0, 0, · · · , 0).
5: for 𝑘′ in order of 𝑘, 𝑘 − 1, · · · , 1 do
6: 𝑖 ← T (𝑖, 𝑘′).𝑁𝑒𝑥𝑡 .
7: 𝑝𝑖 ← 1.

8: end for
9: Return 𝑝 = (𝑝1, · · · , 𝑝𝑚).
10: end if

Sub-algorithm 2: Dynamic Programming algorithm T (𝑎, 𝑘). T
takes as inputs a position 𝑎 ∈ [𝑚] and the remaining budget 𝑘 .

1: if 𝑘 = 1 then
2: 𝑁𝑒𝑥𝑡 ←𝑚.

3: 𝐶𝑜𝑠𝑡 ← ∑
(𝑖 | F (𝑋𝑖 )≥𝑎) 𝑝𝑖 · 𝑐𝑖,𝑚 .

4: Return (𝑁𝑒𝑥𝑡,𝐶𝑜𝑠𝑡).
5: else if 𝑎 ≥ 𝑚 + 1 then
6: Return (𝑛𝑢𝑙𝑙, 0).
7: else
8: for 𝑎′ in {𝑎 + 1, , · · · ,𝑚 + 1} do
9: 𝑐𝑜𝑠𝑡𝑎′ ← T (𝑎′, 𝑘 − 1) .𝐶𝑜𝑠𝑡 +∑𝑎≤𝑋𝑖≤𝑎′−1

𝑝𝑖 · 𝑐𝑖,(𝑎′−1) .
10: end for
11: 𝑁𝑒𝑥𝑡 ← arg min𝑎′ 𝑐𝑜𝑠𝑡𝑎′ .

12: 𝐶𝑜𝑠𝑡 ← min𝑎′ 𝑐𝑜𝑠𝑡𝑎′ .

13: Return (𝑁𝑒𝑥𝑡,𝐶𝑜𝑠𝑡).
14: end if

protocols without providing privatization solutions [19] or only

approximate the optimal perturbation [44].

6 POSITIVE NOISE FOR PAC PRIVACY
In this section, we study how to determine the optimal postive

noise for PAC Privacy. From Proposition 2, we know the posterior

advantage measured in KL-divergence Δ
𝜌

𝐾𝐿
= D𝐾𝐿 (1𝛿𝜌 ∥1𝛿𝑜,𝜌 ), for

an arbitrary adversarial inference captured by 𝜌 , is upper bounded

by themutual informationMI(𝑋 ;F (𝑋 )+e), where𝑋 is the sensitive

input generated from some distribution D, F is the processing

Algorithm 3 Generating noise for PAC privacy

1: Input: The maximum range for the positive noise 𝑅; the second

moment budget 𝐵; the standard deviation of output 𝑦, 𝜎𝑦 .

2: Use binary search to find 𝜎𝑜 that minimizes L𝑠𝑡𝑑 (𝜎).
3: Return L𝑠𝑡𝑑 (𝜎𝑜 ).

Sub-algorithm L𝑠𝑡𝑑 : given a standard deviation 𝜎 , find the best

mean 𝜇 such that the normal distribution 𝑁 (𝜇, 𝜎) gives the
optimal PAC privacy loss. Return the corresponding PAC loss.

1: if S( 𝑅
2
, 𝜎) ≤ 𝐵 then

2: Return
𝑅
2
.

3: else
4: Use binary search to find 𝜇′ such that S(𝜇′, 𝜎) = 𝐵 and

return 𝜇′.
5: end if

function and 𝑒 is some positive noise. As one of the key motivations

of PAC Privacy is to enable automatic privatization of black-box

processing F , here, we do not put any additional assumptions on

the output distribution 𝑌 = F (𝑋 ) but only assume the variance of

𝑌 , Var(𝑌 ) = E
[
(𝑌 − E[𝑌 ])2

]
, is bounded by 𝜎2

𝑌
. As demonstrated

in [46], when the output domain Y∗ of F is bounded, Var(𝑌 ) can
be estimated efficiently in high confidence. Within this general

black-box setup, we do not assume either the input X∗ or output
domain Y∗ of the processing function F : X∗ → Y∗ is finite, and
F (𝑋 ) for 𝑋 ← D can be either discrete or continuous.

In the following, we focus on positive noise 𝑒 in a continuous

distribution within some bounded interval [0, 𝑅]. Still, the utility
loss is defined by the second moment of e, E[e2] = 𝜇2

𝑒 +𝜎2

𝑒 , required

to be bounded by some budget 𝐵. Here, we use 𝜇𝑒 and 𝜎
2

𝑒 to denote

the mean (bias) and the variance of the noise e, respectively. To
determine the optimal noise distribution D𝑒 , it reduces to solve the

following min-max problem,

min

D𝑒 ,E[𝑒2 ]≤𝐵
max

DF(𝑋 ) ,Var(F(𝑋 ) )≤𝜎2

𝑌

MI(𝑋 ;F (𝑋 ) + 𝑒)

= min

D𝑒 ,E[𝑒2 ]≤𝐵
max

D𝑌 ,Var(𝑌 )≤𝜎2

𝑌

h(𝑌 + 𝑒) − h(𝑒). (29)

In (29), we use h to represent the differential entropy, where h(𝑒) =∫ ∞
−∞ −P(𝑒 = 𝑧) log(P(𝑒 = 𝑧))𝑑𝑧, and adopt the classic entropy

expression of mutual information [17]. (29) models that given a

second moment budget 𝐵 of injected noise e, we aim to minimize

the worst-case mutual information for arbitrary processing out-

put distribution 𝑌 = F (𝑋 ) with bounded variance 𝜎2

𝑌
, the only

knowledge assumed about the black-box processing function F .
On the other hand, since 𝑌 and 𝑒 are independent, the variance

of 𝑌 + 𝑒 is upper bounded by 𝜎2

𝑌
+ 𝜎2

𝑒 . It is well-known that for

any continuous distribution with bounded variance, the Gaussian

distribution achieves the maximal entropy, where ℎ(𝑌 + 𝑒) ≤ 1

2
·(

log(2𝜋 (𝜎2

𝑌
+ 𝜎2

𝑒 )) + 1

)
[17]. The equality is achievable and we

specify it in Appendix H. Thus, (29) is upper bounded as

min

D𝑒 ,E[𝑒2 ]≤𝐵

1

2

·
(
log(2𝜋 (𝜎2

𝑌 + 𝜎
2

𝑒 )) + 1

)
− h(𝑒) . (30)

The following theorem demonstrates that the optimal distribution

to (30) under constraints must be a Gaussian distribution N(𝜇, 𝜎)
truncated and normalized within [0, 𝑅].
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Figure 4: AES Secret Key Protection with Optimal Positive Perturbation in Maximal Leakage and PAC Privacy
.

Theorem 5 (Optimal Positive Noise Class for PAC Privacy). Sup-
pose 𝑒 is restricted within [0, 𝑅] and E[𝑒2] ≤ 𝐵, then the optimal
noise distribution D𝑒 of (30) must be in a truncated Gaussian form

P(𝑒 = 𝑧) = 1

𝜎 (Φ( 𝑅−𝜇𝜎 ) − Φ(
−𝜇
𝜎 ))

· 𝑒−(𝑧−𝜇 )
2/(2𝜎2 ) · 1𝑧∈[0,𝑅 ] ,

for some 𝜇 ∈ [0, 𝑅], i.e., some Gaussian distribution N(𝜇, 𝜎2) condi-
tional on [0, 𝑅]. Here, Φ(𝑡) is the cumulative probability function of
N(0, 1), i.e., Φ(𝑡) =

∫ 𝑡
−∞ 1/

√
2𝜋 · 𝑒−𝑡2/2𝑑𝑡 .

By Theorem 5 with proof in Appendix H, it suffices to optimize

the two parameters 𝜇 and 𝜎 of a truncated Gaussian distribution

within [0, 𝑅]. Since both 𝜎𝑒 and h(𝑒) in (30) can be expressed using

𝜇 and 𝜎 , the objective problem with the associated second moment

constraint can be rewritten as (40) shown in Appendix H. In (40),

we use the following notations: 𝛼 = −𝜇/𝜎 and 𝛽 = (𝑅 − 𝜇)/𝜎 with

𝜑 (𝑥) = 1/
√

2𝜋 · 𝑒−𝑥2/2
and Φ(𝑡) =

∫ 𝑡
−∞ 1/

√
2𝜋 · 𝑒−𝑡2/2𝑑𝑡 .

At a first glance, both the objective function obj(𝜇, 𝜎) and the

second moment constraint S(𝜇, 𝜎) ≤ 𝐵 in (40) are complicated

without a closed form. However, assisted by symbolic analysis in

Mathematica, we have the following important observations:

a) Given 𝜎 , if we ignore the second-moment budget 𝐵 (or equiv-

alently set 𝐵 = ∞), Obj(𝜇, 𝜎) in (40) decreases when 𝜇 < 𝑅/2
and increases when 𝜇 > 𝑅/2, and the minimum is achieved when

𝜇 = 𝑅/2;
b) Given 𝜎 , the second moment S(𝜇, 𝜎) of a Gaussian noise

N(𝜇, 𝜎2) of mean 𝜇 and variance 𝜎2
truncated over [0, 𝑅] strictly

increases with 𝜇.

The above two observations suggest that when 𝜎 is given, we

can adjust the 𝜇 value to reduce Obj(𝜇, 𝜎) as follows:
(1) We first evaluate S(𝑅/2, 𝜎). If S(𝑅/2, 𝜎) ≤ 𝐵, then return

𝑅/2 as the optimal 𝜇;

(2) Otherwise, we need to find themaximum 𝜇 such thatS(𝜇, 𝜎) ≤
𝐵. Given that S(𝜇, 𝜎) increases with 𝜇, this is equivalent
to finding 𝜇 such that S(𝜇, 𝜎) = 𝐵 and we can use binary

search to find an approximation up to any 𝜅 accuracy within

Θ(log(1/𝜅)) time.

Now, let 𝜇 (𝜎) denote the optimal 𝜇 given 𝜎 , and provided a) and b),

Obj(𝜇 (𝜎), 𝜎) also enjoys a nice property, which first decreases and

then increases with 𝜎 , leading to a unique optimum. This allows a

straightforward use of binary search again to find a good 𝜎 value,

summarized as Algorithm 3.

With Algorithm 3, we continue the study on cache leakage of an

AES key in Section 5.2 and present near-optimal positive noise in

PAC privacy in Fig. 4 (b,c). In the same setup, following the same

evaluation by Metior [19], the variance of released cache misses

from a random 256-bit secret key equals 𝜎2

𝑌
= 20.6. In Figure 4(b),

we plot the leakage measured in mutual information across various

second moment budget 𝐵 when 𝑅 = 5, 10, 20. Note that given 𝑅,

the 𝜇 of optimal noise must satisfy 𝜇 ≤ 𝑅
2
. This is because the

selections of (𝜇, 𝜎) and (𝑅 − 𝜇, 𝜎) produce the same privacy loss,

but (𝑅−𝜇, 𝜎) has a larger secondmoment. Thus, the secondmoment

of the optimal noise is bounded by 𝑅2/3 and the privacy loss will

decrease with 𝐵 until 𝐵 = 𝑅2/3. This matches the observation from

Figure 4(b), where all curves of TBG noise become flat after some

turning points. Meanwhile, there is a gap between the privacy

loss produced by positive TBG noise and unbounded, zero-mean

Gaussian noise [46], which narrows as 𝑅 and 𝐵 increase.

In Fig. 4(c), we plot the privacy loss against the maximum mag-

nitude 𝑅, when 𝐵 = 25, 50, 100, and∞, respectively. Here, we also
observe that the privacy loss stops decreasing with large enough

𝑅. Recall that if 𝑅 is large enough such that S(𝑅/2, 𝜎) > 𝐵, the

optimal 𝜇 should be selected such that S(𝜇, 𝜎) = 𝐵. Therefore, af-
ter 𝑅 reaches the threshold determined by S(𝑅/2, 𝜎) = 𝐵, further
increasing 𝑅 only results in minor changes to the 𝜇 and 𝜎 of the

optimal distribution, and thus provides limited improvement to the

privacy risk bound.

7 ADDITIONAL RELATEDWORKS
Bounded Noise Mechanism: From an asymptotic viewpoint, the

maximal magnitude 𝑅 of perturbation to produce DP guarantees

under compositions has been studied in [18]. In particular, [18]

proved that when 𝛿 ≥ 𝑒−�̃� (𝑇 ) , there exists some bounded noise

within [−𝑅, 𝑅] such that 𝑅 = 𝑂 (
√︁
𝑇 log(1/𝛿)/𝜖) to produce (𝜖, 𝛿)-

DP under 𝑇 -fold composition. This suggests that when 𝛿 is not too

small, the bounded noise mechanism can asymptotically match the

same second moment of a general noise mechanism such as Gauss-

ian without constraints. However, though the noise construction of

[18] is shown to enjoy the asymptotically-optimal dependence on 𝑅,

non-asymptotically, its second moment may not be always optimal

and can be worse than TSL in the examples considered in Fig. 2. As

a comparison, in this paper, we show how to non-asymptotically

optimize the noise distribution given various budgets with the more

powerful HRDP to handle the composition.

Optimal Mechanism for MaxL: The properties of MaxL and its

relationship to other information theory quantities, such as Sibson

mutual information, have been studied in [28, 36] and the optimal

scheme for MaxL has also been previously studied in [28]. In par-

ticular, [28] proved that, with proper non-decreasing assumptions
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on the cost matrix C𝑛×𝑚 , the convex hull of the cost functions

determined by deterministic schemes is identical to that formed

by both deterministic and randomized schemes. In this paper, we

improve their results and show a stronger linear interpolation rep-

resentation to fully characterize the optimal scheme for arbitrary

𝑙𝑜𝑔(𝑣)-MaxL using the optimal deterministic schemes in Theorem

4. Based on Theorem 4, we present the first efficient algorithm to

determine the optimal solution in polynomial time.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we studied the optimal positive perturbation in vari-

ous privacy metrics. With a focus on the utility loss measured by

(weighted) second moment of noise, we provided insights into the
characteristics of the optimal perturbation using finite parameters

that enable efficient optimization. It would be interesting to gener-

alize our techniques to handle other utility loss measurements.

We also want to mention, besides mitigating side-channel leak-

age, one-sided noise is also useful for applications with a specific

privacy-preserving overestimation (optimistic) or underestimation

(pessimistic) requirement. In addition, for our results on DP, it

should be noted that Rényi DP is not the tightest known method to

compute composition; even more powerful tools are known, such

as, f-DP [20] or through characteristic functions [53]. Thus, one

interesting generalization is to consider the hybrid version of those

more advanced composition accounting methods. One may follow

a similar idea to consider the hybrid versions of those measures on

positive noise mechanisms.

For PAC Privacy, in this paper we focused on the general black-

box processing without assuming anything specific about the dis-

tribution of F (𝑋 ) except its variance. When more information is

given with respect to F , an interesting problem is to generalize

Theorem 5 to accommodate the stronger prior knowledge on F .
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A PROOF OF LEMMA 1
Lemma 1 (Parameter of Positive Laplace Noise). Suppose a process-
ing function F : X∗ → R such that for an arbitrary adjacent dataset
pair𝑋 ∼ 𝑋 ′, |F (𝑋 )−F (𝑋 ′) | ≤ s, i.e., the sensitivity of F is bounded
by s. Then, if we select 𝜆𝐿 = s/𝜖 , 𝜇𝐿 ≥ s + 𝑠𝜖 · log

1

2𝛿 (1−𝑒−𝜇𝐿 ·𝜖/s ) , and

𝑅 = 2𝜇𝐿 , such a (𝜇𝐿, 𝜆𝐿, 𝑅)-TBL perturbation ensures (𝜖, 𝛿)-DP.

Proof. Without loss of generality, given the (𝜖, 𝛿) measure is

invariant to the shift, we assume F (𝑋 ) = 0 and F (𝑋 ′) = s. Thus,
the support domain of the distribution of F (𝑋 ) + e is [0, 𝑅] while
that of F (𝑋 ) + e is over [s, 𝑅 + s].

First, given the selection of 𝜇𝐿 and 𝜆𝐿 with 𝑅 = 2𝜇𝐿 , once 𝜇𝐿 ≥ s,
it is noted that

𝑍𝜇,𝜆,𝑅 =
1

1 − 𝑒−𝜇𝐿/𝜆𝐿
,

and

Pr

(
e ∈ [0, s]

)
=

0.5
(
𝑒−(𝜇𝐿−s)/𝜆𝐿 − 𝑒−𝜇𝐿/𝜆𝐿

)
1 − 𝑒−𝜇𝐿/𝜆𝐿

.

Thus, we need to ensure Pr

(
e ∈ [0, s]

)
≤ 𝛿 (and similarly Pr

(
e ∈

[𝑅 − s, 𝑅]
)
≤ 𝛿), which in turn suffices to show

𝑒−(𝜇𝐿−s)/𝜆𝐿 ≤ 𝑒−(𝜇𝐿−s)/𝜆𝐿 − 𝑒−𝜇𝐿/𝜆𝐿 ≤ 2𝛿 (1 − 𝑒−𝜇𝐿/𝜆𝐿 ),

which suffices to require that

𝜇𝐿 − s
𝜆𝐿

≥ log

1

2𝛿 (1 − 𝑒−𝜇𝐿/𝜆𝐿 )
.

On the other hand, based on the property of Laplace noise, condi-

tional on the output of F (𝑋 )+𝑒 is within [0, 𝑅−s], where F (𝑋 ′)+𝑒
is within [s, 𝑅], when 𝜆 = s/𝜖 , it is not hard to see that the distri-

bution of F (𝑋 ) + e and that of F (𝑋 ′) + e satisfies the divergence
requirement for (𝜖, 𝛿)-DP.

□

B PROOF OF THEOREM 1
Theorem 1 (Optimum for Single Release). Given a processing func-
tion F of sensitivity 1, among all possible distributions of a positive
noise e over [0, +∞) which ensure an (𝜖, 𝛿)-DP guarantee of the noisy
version F (·) + e, the following distribution with probability mass
function given in (1) below,

𝑝𝑖 =

{
𝛿 · 𝑒𝜖𝑖 if 𝑖 < 𝜔
𝛿 · 𝑐 · 𝑒𝜖 (2𝜔−𝑖 ) if 𝜔 ≤ 𝑖 ≤ 𝜔 ′,

(16)

is in a sense that it achieves the minimal 𝑘-th moment, for any positive
integer 𝑘 . Here, 𝜔 ′ is either 2𝜔 − 1 or 2𝜔 , and 𝑐 ∈ [𝑒−2𝜀 , 1] is for
normalization such that the sum of 𝑝𝑖 equals 1. Here, 𝜔 is a turning
point, defined as

𝜔 =
1

𝜖
· log( 2

𝑒𝜖 + 1

+ 𝑒𝜖 − 1

𝛿 (𝑒𝜖 + 1) ) . (17)

To prove Theorem 1, we start with two lemmas as follows.

Lemma 3. If a distribution (𝑝0, 𝑝1, · · · ) satisfies (𝜖, 𝛿)-DP under
sensitivity 1 and 𝑝𝑖 > 𝛿 , then for any 𝑗 ≤ ln(𝑝𝑖/𝛿)/𝜖 , 𝑝𝑖+𝑗 ≥ 𝑒− 𝑗𝜖 ·𝑝𝑖 .

Proof. Denote 𝐿 = {𝑖 | 𝑝𝑖 > 𝑒𝜖𝑝𝑖+1}. If {𝑝𝑖 } satisfies (𝜖, 𝛿)-DP,
then

∑
𝑖∈𝑅 𝑝𝑖 ≤ 𝛿 .
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We will prove the lemma by induction. The lemma clearly holds

when 𝑗 = 0. Suppose the lemma holds for some 𝑗 ≤ ln(𝑝𝑖/𝛿)/𝜖 − 1

as well, i.e.,

𝑝𝑖+𝑗 ≥ 𝑒− 𝑗𝜖𝑝𝑖 .
This implies that 𝑝𝑖+𝑗 > 𝛿 , thus (𝑖 + 𝑗) can not be in 𝐿. Therefore,

𝑝𝑖+𝑗+1 ≥ 𝑒−𝜖𝑝𝑖+𝑗 and the lemma holds for 𝑗 + 1 as well. □

Lemma4. Given two tuples 𝑃 = (𝑝0, 𝑝1, · · · , 𝑝𝑛) and𝑄 = (𝑞0, 𝑞1, · · · ,
𝑞𝑛) where

∑𝑛
𝑖=0

𝑝𝑖 =
∑𝑛
𝑖=0

𝑞𝑖 , if
∑𝑖
𝑗=0

𝑝 𝑗 ≥
∑𝑖
𝑗=1

𝑝 𝑗 holds for all
0 ≤ 𝑖 ≤ 𝑛, then for any 𝑣0 ≤ 𝑣1 ≤ · · · ≤ 𝑣𝑛 , we have

∑𝑛
𝑖=0

𝑝𝑖𝑣𝑖 ≤∑𝑛
𝑖=0

𝑞𝑖𝑣𝑖 .

Proof. We can prove by induction on 𝑛. First, we know that

𝑝𝑛 − 𝑞𝑛 =

𝑛−1∑︁
𝑖=0

𝑞𝑖 −
𝑛−1∑︁
𝑖=0

𝑝𝑖 ≤ 0.

We will construct a new tuple 𝑄 ′ = (𝑞′
0
, · · · , 𝑞′

𝑛−1
, 𝑞′𝑛) where (1)

𝑞′𝑛 = 𝑝𝑛 , (2) 𝑞
′
𝑛−1

= 𝑞𝑛−1 + (𝑞𝑛 − 𝑝𝑛) and (3) 𝑞′
𝑖
= 𝑞𝑖 for 𝑖 in

{0, 1, · · · , 𝑛 − 2}. Essentially, we reduce 𝑄’s weight in the last po-

sition to 𝑝𝑛 and move the reduced amount to position 𝑛 − 1. We

have

𝑛∑︁
𝑖=0

𝑞𝑖𝑣𝑖 = (𝑞𝑛 − 𝑝𝑛) · (𝑣𝑛 − 𝑣𝑛−1) +
𝑛∑︁
𝑖=0

𝑞′𝑖𝑣𝑖 ≥
𝑛∑︁
𝑖=0

𝑞′𝑖𝑣𝑖 .

Notice that

∑𝑖
𝑗=0

𝑝 𝑗 ≥
∑𝑖
𝑗=0

𝑞′
𝑗
still holds between 𝑃 and 𝑄 ′. Fur-

ther, 𝑝𝑛 = 𝑞′𝑛 . By induction, the lemma should hold for the tuples

(𝑝0, · · · , 𝑝𝑛−1) and (𝑞′
0
, · · · , 𝑞′

𝑛−1
). Thus,

𝑛∑︁
𝑖=0

𝑞𝑖𝑣𝑖 ≥
𝑛∑︁
𝑖=0

𝑞′𝑖𝑣𝑖 ≥
𝑛∑︁
𝑖=0

𝑝𝑖𝑣𝑖 .

This completes our proof. □

We will now prove Theorem 1.

Proof. We first specify how the parameters𝜔 ′ and 𝑐 are chosen.
Recall that in Theorem 1, we define

𝜔 =
1

𝜖
· log( 2

𝑒𝜖 + 1

+ 𝑒𝜖 − 1

𝛿 (𝑒𝜖 + 1) ),

Let

𝑐 (𝜔) = 𝑒𝜖 − 1 − (𝑒𝜖𝜔 − 1) · 𝛿
(𝑒𝜖 (𝜔+1) − 1) · 𝛿

.

If 𝑐 (𝜔) ≥ 𝑒−2𝜖
, then we set 𝜔 ′ = 2𝜔 and 𝑐 = 𝑐 (𝜔). Else, we set

𝜔 ′ = 2𝜔 − 1 and

𝑐 =
𝑒𝜖 − 1 − (𝑒𝜖𝜔 − 1) · 𝛿
(𝑒𝜖 (𝜔+1) − 𝑒𝜖 ) · 𝛿

.

It can be guaranteed that 𝑐 ≥ 𝑒−2𝜖
and 𝑝𝑖 ≥ 𝛿 except for 𝑖 = 𝜔 ′.

Let (𝑝0, 𝑝1, · · · ) be the distribution constructed in (16) using
the above parameters. We first show that it satisfies (𝜀, 𝛿)-DP. By
definition, for any 𝑖 ∈ [0, 𝜔′ − 1],

𝑝𝑖

𝑝𝑖+1
=


𝑒−𝜖 if 𝑖 < 𝜔 − 1

𝑒−𝜖/𝑐 if 𝑖 = 𝜔 − 1

𝑒𝜖 if 𝑖 > 𝜔 − 1.

Since 𝑐 ∈ [𝑒−2𝜖 , 1], we have (𝑝𝑖/𝑝𝑖+1) ∈ [𝑒−𝜖 , 𝑒𝜖 ] for all 𝑖 ∈ [0, 𝜔′−
1]. Therefore, the only two points that violate 𝜖-DP are 𝑖 = 0 and

𝑖 = 𝜔 ′. Given that 𝑝0 = 𝛿 and 𝑝𝜔 ′ ≤ 𝛿 , the distribution (𝑝0, 𝑝1, · · · )
satisfies (𝜖, 𝛿)-DP.

Next, we show that the noise in (16) is optimal. For any other

distribution (𝑝′
0
, 𝑝′

1
, · · · ) that satisfies (𝜖, 𝛿), we claim that for all

𝑖 ≥ 0,

𝑖∑︁
𝑗=0

𝑝 𝑗 ≥
𝑖∑︁
𝑗=0

𝑝′𝑗 . (31)

This means that 𝑝 is a strictly "smaller" distribution than 𝑝′. For
any𝑚 > 0, if we set 𝑣𝑖 = 𝑖

𝑚
in Lemma 4, then we have that for any

𝑚 > 0,

∑
𝑖 𝑝𝑖 · 𝑖𝑚 ≤

∑
𝑖 𝑝
′
𝑖
· 𝑖𝑚, which means that 𝑝 has a smaller

𝑚𝑡ℎ moment than 𝑝′. Let

𝐿 = {𝑖 | 𝑝′𝑖 > 𝑒
𝜖𝑝′𝑖+1} and 𝑅 = {𝑖 | 𝑝′𝑖 > 𝑒

𝜖𝑝′𝑖−1
}.

By definition of (𝜖, 𝛿)-DP, we have

Pr[𝑖 ∈ 𝐿] =
∑︁
𝑖∈𝐿

𝑝′𝑖 ≤ 𝛿 and Pr[𝑖 ∈ 𝑅] =
∑︁
𝑖∈𝑅

𝑝′𝑖 ≤ 𝛿.

Since 𝑝′−1
is undefined, 0 ∈ 𝑅 and it must be that 𝑝′

0
≤ 𝛿 = 𝑝0.

Therefore, (31) holds when 𝑖 = 0.

We first prove using induction that for any 1 ≤ 𝑖 < 𝜔 , 𝑝′
𝑖
≤ 𝑝𝑖 .

Suppose this holds for some 𝑖 = 𝑘 − 1, let us consider when 𝑖 = 𝑘 .

• If 𝑘 ∈ 𝑅, then 𝑝′
𝑘
≤ 𝛿 ≤ 𝑝𝑘 .

• If 𝑘 ∉ 𝑅, then 𝑝′
𝑘
≤ 𝑒𝜖𝑝′

𝑘−1
≤ 𝑒𝜖𝑝𝑘−1

= 𝑝𝑘 .

Since 𝑝′
𝑖
≤ 𝑝𝑖 for all 1 ≤ 𝑖 ≤ 𝜔 , this immediately implies that (31)

holds for all 1 ≤ 𝑖 ≤ 𝜔 .
We now consider when 𝜔 ≤ 𝑖 < 𝜔 ′. Suppose (31) holds for

𝑖 = 𝑘 − 1 (𝜔 ≤ 𝑘 < 𝜔 ′), and let us consider the scenario when 𝑖 = 𝑘 .

Let us assume that (31) does not hold for 𝑖 = 𝑘 , i.e.,

𝑘∑︁
𝑗=0

𝑝 𝑗 <

𝑘∑︁
𝑗=0

𝑝′𝑗 . (32)

Since (31) holds for 𝑖 = 𝑘 − 1, it must be that 𝑝𝑘 < 𝑝′
𝑘
. By Lemma 3,

for any 𝑗 ≤ 𝜔 ′ − 𝑘 ,
𝑝′
𝑘+𝑗 ≥ 𝑒

− 𝑗𝜖 · 𝑝′
𝑘
> 𝑒− 𝑗𝜖 · 𝑝𝑘 = 𝑝𝑘+𝑗

holds for all 𝑘 + 𝑗 ≤ 2𝑇 . Therefore,

𝜔 ′∑︁
𝑖=0

𝑝′𝑖 =
𝑘∑︁
𝑖=0

𝑝′𝑖 +
𝜔 ′∑︁

𝑖=𝑘+1
𝑝′𝑖 >

𝑘∑︁
𝑖=0

𝑝𝑖 +
𝜔 ′∑︁

𝑖=𝑘+1
𝑝𝑖 = 1.

The first part is based on our assumption in (32) and the second

part is based on 𝑝′
𝑖
> 𝑝𝑖 for all 𝑘 ≤ 𝑖 ≤ 𝜔 ′. We have reached a

contradiction. Thus the lemma must also hold for 𝑖 = 𝑘 .

Finally, note that the lemma trivially holds for 𝑖 = 𝜔 ′, as
∑𝜔 ′
𝑖=0

𝑝′
𝑖
≤

1 =
∑𝜔 ′
𝑖=0

𝑝𝑖 . This completes our induction proof. □

C PROOF OF THEOREM 2
Theorem 2 (HRDP Composition). For 𝑇 mechanisms M𝑖 , 𝑖 =

1, 2, · · · ,𝑇 where each M𝑖 satisfies (𝛼, 𝜖 (𝑖 )𝛼,𝑝 , 𝛿
(𝑖 )
𝑝 )-HRDP, the com-

position ofM[1:𝑇 ] satisfies (𝜖, 𝛿)-DP such that for any 𝛿 ′ > 0,

𝜖 ≥
𝑇∑︁
𝑖=1

𝜖
(𝑖 )
𝛼,𝑝 +

log(1/𝛿 ′)
𝛼 − 1

, and 𝛿 ≥
𝑇∑︁
𝑖=1

𝛿
(𝑖 )
𝑝 + 𝛿 ′ . (24)

We will use the following lemma mildly generalized from Propo-

sition 10 in [32].
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Lemma 5. Let 𝛼 > 1, P and Q be two distributions defined over R,
with probability density function 𝑝 and 𝑞, respectively. Let 𝑆𝑑 (Q) =
{𝑧 |𝑞(𝑧) = 0} be the degenerate set of Q . Then, for any 𝐴 ⊂ R/𝑆𝑑 (Q),

P(𝐴) ≤
(
𝑒D𝛼 (P·1𝐴 ∥Q ·1𝐴 ) · Q (𝐴)

) (𝛼−1)/𝛼
. (33)

Proof. Based on the Holder Inequality,

P(𝐴) =
∫
𝑧∈𝐴

𝑝 (𝑧)𝑑𝑧

≤
( ∫
𝑧∈𝐴

𝑝 (𝑧)𝛼𝑞(𝑧)1−𝛼𝑑𝑧
)
1/𝛼 ·

( ∫
𝑧∈𝐴

𝑞(𝑧)𝑑𝑧
) (𝛼−1)/𝛼

=
(
𝑒D𝛼 (P·1𝐴 ∥Q ·1𝐴 ) · Q (𝐴)

) (𝛼−1)/𝛼
.

(34)

□

Now, we consider the composition. Let 𝑌1, 𝑌2, · · · , 𝑌𝑇 be the in-

dependent outputs of the objective mechanismM⊗𝑇 across 𝑇 it-

erations. For two arbitrary adjacent datasets 𝑋 and 𝑋 ′, suppose
𝛿0 (𝑋 ) = Pr(M⊗𝑇 (𝑋 ) ∈ 𝑆𝑑 (𝑋 ′)). By union bound, the probability

Pr(M⊗𝑇 (𝑋 ) = (𝑌1, 𝑌2, · · · , 𝑌𝑇 ) ∈ (R/𝑆𝑑 (𝑋 ′))⊗𝑇 ) ≥ 1 −𝑇𝛿0 .

On the other hand, let

𝜖0 (𝑋 ) = D𝛼 (PM(𝑋 ) · 1R/𝑆𝑑 (𝑋 ′ ) ∥PM(𝑋 ′ )1R/𝑆𝑑 (𝑋 ′ ) )

be the partial RDP conditioned on the set R/𝑆𝑑 (𝑋 ′). Now, for an
arbitrary set 𝐴 ∈ R𝑇 , let 𝐴𝑛𝑑 = 𝐴 ∩ (R/𝑆𝑑 (𝑋 ′))⊗𝑇 , and we have

that

Pr(M⊗𝑇 (𝑋 ) ∈ 𝐴)

= Pr(M⊗𝑇 (𝑋 ) ∈ 𝐴𝑛𝑑 ) + Pr(M⊗𝑇 (𝑋 ) ∈ 𝐴/𝐴𝑛𝑑 )
≤ 𝑇𝛿0 (𝑋 )

+
(
𝑒
D𝛼 (P⊗𝑇M(𝑋 ) ·1𝐴𝑛𝑑

∥P⊗𝑇M(𝑋 ′ )1𝐴𝑛𝑑
)

Pr(M⊗𝑇 (𝑋 ′) ∈ 𝐴𝑛𝑑 )
) 𝛼−1

𝛼

= 𝑇𝛿0 (𝑋 ) +
(
𝑒𝑇𝜖0 (𝑋 )

Pr(M⊗𝑇 (𝑋 ′) ∈ 𝐴𝑛𝑑 )
) (𝛼−1)/𝛼

.

(35)

In the last equation in (35), we use the fact that the Rényi Diver-

gence between independent product distributions equals the sum

of Rényi Divergences between each corresponding pair. Now, with

a similar reasoning as Proposition 3 in [32], for some 𝛿 ′ > 0, if(
𝑒𝑇𝜖0 (𝑋 )

Pr(M⊗𝑇 (𝑋 ′) ∈ 𝐴𝑛𝑑 )
)
> (𝛿 ′)𝛼/(𝛼−1)

, then(
𝑒𝑇𝜖0 (𝑋 )

Pr(M⊗𝑇 (𝑋 ′) ∈ 𝐴𝑛𝑑 )
)
1−1/𝛼

≤
(
𝑒𝑇𝜖0 (𝑋 )

Pr(M⊗𝑇 (𝑋 ′) ∈ 𝐴𝑛𝑑 )
)
· (𝛿 ′)−1/(𝛼−1)

=
(
𝑒𝑇𝜖0 (𝑋 )+ log(1/𝛿′ )

𝛼−1

)
· Pr(M⊗𝑇 (𝑋 ′) ∈ 𝐴𝑛𝑑 ) .

(36)

For the other casewhen

(
𝑒𝑇𝜖0 (𝑋 )

Pr(M⊗𝑇 (𝑋 ′) ∈ 𝐴𝑛𝑑 )
)
≤ (𝛿 ′)𝛼/(𝛼−1)

,

it is clear that(
𝑒𝑇𝜖0 (𝑋 )

Pr(M⊗𝑇 (𝑋 ′) ∈ 𝐴𝑛𝑑 )
)
1−1/𝛼 ≤ 𝛿 ′ .

Therefore, putting things together, we obtain that

Pr(M⊗𝑇 (𝑋 ) ∈ 𝐴) ≤ (𝑇𝛿0 (𝑋 ) + 𝛿 ′)

+
(
𝑒𝑇𝜖0 (𝑋 )+ log(1/𝛿′ )

𝛼−1

)
· Pr(M⊗𝑇 (𝑋 ′) ∈ 𝐴𝑛𝑑 ),

(37)

which provides the expression of 𝜖 and 𝛿 in (24), respectively.

D PROOF OF LEMMA 2
Lemma 2 (Contiguous Support Set). To achieve (𝜖, 𝛿)-DP under
𝑇 -fold composition, the optimal bounded positive noise 𝑒 ∈ [0, 𝑅]
with the minimal second moment must satisfy the following property:
Pr(𝑒 = 0) > 0 and if there exists some 𝑢 such that Pr(𝑒 = 𝑢) = 0,
then Pr(𝑒 ≥ 𝑢) = 0.

Proof. Suppose a noise distribution (𝑝0, 𝑝1, · · · , ) satisfies (𝜖, 𝛿)-
DP under 1-sensitivity and there exists some 𝑘 ≥ 0 such that (1)

𝑝𝑘−1
≠ 0, (2) 𝑝𝑘 = 0, and (4)

∑
𝑖>𝑘 𝑝𝑖 ≠ 0. We will show that the

following distribution

𝑝′𝑖 =

{
𝑝𝑖 if 𝑖 < 𝑘

𝑝𝑖+1 if 𝑖 ≥ 𝑘,

also satisfies (𝜖, 𝛿)-DP. Similar to the proof of Theorem 1, let us

define

𝐿(𝑝) = {𝑖 | 𝑝𝑖 > 𝑒𝜖𝑝𝑖+1} and 𝑅(𝑝) = {𝑖 | 𝑝𝑖 > 𝑒𝜖𝑝𝑖−1}.

The key observation is that
𝑖 ∈ 𝐿(𝑝) ⇐⇒ 𝑖 ∈ 𝐿(𝑝′) if 𝑖 < 𝑘 − 1

𝑖 ∈ 𝐿(𝑝) if 𝑖 = 𝑘 − 1

𝑖 ∈ 𝐿(𝑝) ⇐= (𝑖 − 1) ∈ 𝐿(𝑝′) if 𝑖 > 𝑘 − 1.

It immediately follows that Pr[𝑖 ∈ 𝐿(𝑝) |𝑝] ≤ Pr[𝑖 ∈ 𝐿(𝑝′) |𝑝′]. A
formal analysis is provided as follows:

Pr[𝑖 ∈ 𝐿(𝑝) |𝑝]

= 𝑝𝑖−1 +
( ∑︁
𝑖<𝑘−1 & 𝑖∈𝐿 (𝑝 )

𝑝𝑖

)
+
( ∑︁
𝑖>𝑘−1 & 𝑖∈𝐿 (𝑝 )

𝑝𝑖

)
≥

( ∑︁
𝑖<𝑘−1 & 𝑖∈𝐿 (𝑝′ )

𝑝𝑖

)
+
( ∑︁
𝑖>𝑘−1 & 𝑖−1∈𝐿 (𝑝′ )

𝑝𝑖

)
=

( ∑︁
𝑖<𝑘−1 & 𝑖∈𝐿 (𝑝′ )

𝑝′𝑖
)
+
( ∑︁
𝑖>𝑘−1 & 𝑖−1∈𝐿 (𝑝′ )

𝑝′𝑖−1

)
= Pr[𝑖 ∈ 𝐿(𝑝′) |𝑝′] .

Similarly, it can be shown that Pr[𝑖 ∈ 𝑅(𝑝) |𝑝] ≥ Pr[𝑖 ∈ 𝑅(𝑝′) |𝑝′].
This means that the probability that 𝑝 violates 𝜖-DP is higher than

the probability that 𝑝′ violates 𝜖-DP. Therefore, 𝑝′ satisfies (𝜖, 𝛿)-
DP as well.

Note that the second moment of 𝑝′ is strictly smaller than that

of 𝑝 . So 𝑝 cannot be the optimal noise. This concludes our proof for

Lemma 2. □

E PROOF OF THEOREM 3
Theorem 3 (Efficiency of Algorithm 1). Given selections of 𝛿𝑙 , 𝛿𝑟
and 𝑅0, minimization of 𝐻 (𝑅0, P𝑅0

) is equivalent to minimizing

max

{( 𝑅0∑︁
𝑖=1

(𝑝𝑖 )𝛼

(𝑝𝑖−1)𝛼−1

)
,
( 𝑅0∑︁
𝑖=1

(𝑝𝑖−1)𝛼

(𝑝𝑖 )𝛼−1

)}
,

which is convex with respect to P𝑅0
. In addition, given 𝑅0 and P𝑅0

,
𝐻 (𝑅0, P𝑅0

) is also convex with respect to 𝑝0 and 𝑝𝑅0
, respectively.
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Proof. For convenience, let us denote 𝑛 = 𝑅0 in the following

proof. We will show that the following function

𝐻 (𝑝0, · · · , 𝑝𝑛) =
1

𝛿 −𝑇𝑝0

· (
𝑛∑︁
𝑖=1

(𝑝𝑖 )𝛼

(𝑝𝑖−1)𝛼−1
)𝑇

is convex on both 𝑝0 and 𝑝𝑛 , i.e.,

𝜕2𝐻 (𝑝0, · · · , 𝑝𝑛)
𝜕𝑝2

0

≥ 0, and
𝜕2𝐻 (𝑝0, · · · , 𝑝𝑛)

𝜕𝑝2

𝑛

≥ 0.

Note that this does not imply that 𝐻 (𝑝0, · · · , 𝑝𝑛) is convex on the

space spanned by (𝑝0, 𝑝𝑛). Since we are focusing on 𝑝0 and 𝑝𝑛 ,

we can consider 𝑝1, · · · , 𝑝𝑛−1 as constants. Our observation is that

𝐻 (𝑝0, · · · , 𝑝𝑛) can be written as a sum of sub-functions of the fol-

lowing form:

ℎ(𝑝0, 𝑝𝑛) =
𝑐 · 𝑝𝑎𝑛
(1 − 𝑝0)𝑝𝑏

0

,

where 𝑐 > 0 and 𝑎, 𝑏 ≥ 1 are some positive constants. If we can

show that

𝜕2ℎ(𝑝0, 𝑝𝑛)
𝜕𝑝2

0

≥ 0 and

𝜕2ℎ(𝑝0, 𝑝𝑛)
𝜕𝑝2

𝑛

≥ 0

hold as long as 𝑐 > 0 and 𝑎, 𝑏 ≥ 1, then it naturally follows that

𝐻 (𝑝0, · · · , 𝑝𝑛) is convex on both 𝑝0 and 𝑝𝑛 .

We consider the function

ℎ(𝑥,𝑦) = 𝑦𝑎

(1 − 𝑥)𝑥𝑏
,

where 𝑎, 𝑏 ≥ 1. The second partial derivative of ℎ(𝑥,𝑦) on 𝑥 is

𝜕2ℎ(𝑥,𝑦)
𝜕𝑥2

= 𝑦𝑎 · 𝑥
2𝑏−2 · ((𝑏 + 1) (𝑏 + 2)𝑥2 − 2𝑏𝑥 + 𝑏2)

(𝑥𝑏 − 𝑥𝑏+1)3
.

Since 𝑏 ≥ 1, we have

(𝑏 + 1) (𝑏 + 2)𝑥2 − 2𝑏𝑥 + 𝑏2

≥ 𝑏2𝑥2 − 2𝑏𝑥 + 𝑏2

≥ 𝑏 (𝑥2 − 2𝑥 + 1)
≥ 0.

Therefore,

𝜕2ℎ(𝑥,𝑦)
𝜕𝑥2

≥ 0.

The second partial derivative of ℎ(𝑥,𝑦) on 𝑦 is

𝜕2ℎ(𝑥,𝑦)
𝜕𝑦2

=
𝑎(𝑎 − 1)𝑦𝑎−2

(1 − 𝑥)𝑥𝑏
≥ 0.

In the following, we prove the second part of this theorem. It

is noted that once 𝑅0, 𝑝0 = 𝛿𝑙 and 𝑝𝑅0
= 𝛿𝑟 are given, minimizing

𝐻 (𝑅0, P𝑅0
) with respect to P𝑅0

becomes

arg min

P𝑅
0

𝐻 (𝑅0, P𝑅0
) (38)

= arg min

P𝑅
0

1

𝛼 − 1

max{𝑇 log

𝑅0∑︁
𝑖=1

(𝑝𝑖 )𝛼

(𝑝𝑖−1)𝛼−1
+ log( 1

𝛿 −𝑇𝑝𝑙
), (39)

𝑇 log

𝑅0∑︁
𝑖=1

(𝑝𝑖−1)𝛼

(𝑝𝑖 )𝛼−1
+ log( 1

𝛿 −𝑇𝑝𝑟
)} (40)

= arg min

P𝑅
0

max{
𝑅0∑︁
𝑖=1

(𝑝𝑖 )𝛼

(𝑝𝑖−1)𝛼−1
,

𝑅0∑︁
𝑖=1

(𝑝𝑖−1)𝛼

(𝑝𝑖 )𝛼−1
}, (41)

by removing the constant term and using the monotone property

of log(·). By the joint convexity of the Hellinger integral [42], it is

known that for any two pairs of positive real numbers (𝑝0, 𝑞0) and
(𝑝1, 𝑞1), and some 𝜆 ∈ (0, 1),

(1 − 𝜆)𝑝𝛼
0
𝑞1−𝛼

0
+ 𝜆𝑝𝛼

1
𝑞1−𝛼

1
≥ 𝑝𝛼

𝜆
𝑞1−𝛼
𝜆

. (42)

Here, 𝑝𝜆 = (1−𝜆)𝑝0 +𝜆𝑝1 and 𝑞𝜆 = (1−𝜆)𝑞0 +𝜆𝑞1. Therefore, both∑𝑅0

𝑖=1

(𝑝𝑖 )𝛼
(𝑝𝑖−1 )𝛼−1

and

∑𝑅0

𝑖=1

(𝑝𝑖−1 )𝛼
(𝑝𝑖 )𝛼−1

in (41) are convex with respect to

the distribution P𝑅0
, and it is not hard to verify that the max of two

convex functions is still convex.

□

F PROOF OF THEOREM 4
Theorem 4 (Optimal Perturbation for MaxL). When 𝑣 is some
positive integer, the optimal solution(s) to (28) are exactly DS𝑣 . When
𝑣 = ⌈𝑣⌉ −𝜆 for 𝜆 ∈ (0, 1) is not an integer, then the optimal solution(s)
to (28) is the linear interpolation of DS⌊𝑣⌋ and DS⌈𝑣⌉ as,

𝜆 · DS⌊𝑣⌋ + (1 − 𝜆) · DS⌈𝑣⌉
= {𝜆 · P⌊𝑣⌋ + (1 − 𝜆) · P⌈𝑣⌉ | P⌊𝑣⌋ ∈ DS⌊𝑣⌋ , P⌈𝑣⌉ ∈ DS⌈𝑣⌉ }.

Before we dive into Theorem 4, we need to first recap some of

the results in [44]. Given a mechanism P = {𝑝𝑖 𝑗 } and some prior

distribution {𝑞𝑖 }, we use L(P) to denote the exponential of the

privacy loss and C(P) to denote the cost, i.e.,

L(P) =
𝑚∑︁
𝑗=1

max

𝑖
𝑝𝑖 𝑗 , C(P) =

𝑛∑︁
𝑖=1

𝑞𝑖

𝑚∑︁
𝑗=1

𝑐𝑖 𝑗𝑝𝑖 𝑗 .

Note that the maximum leakage privacy loss is actually log(L(P)).
We will ignore the logarithmic function and focus on exploring the

relationship between L(P) and C(P). In this way, the loss L(P)
is integer for any deterministic P. This simplifies our analysis. Let

𝑆 be the set of achievable (L(P), C(P)) pairs for any mechanism

P, and let 𝑆𝑑 be the set of achievable (L(P), C(P)) pairs for any
deterministic mechanism P. It is obvious that 𝑆𝑑 is a subset of 𝑆 .

Further, if a mechanism P is optimal under its loss budget L(P),
then C(P) = inf [𝐶 : (L(P),𝐶) ∈ 𝑆]. It is shown in [44] that the

boundary of the convex hull formed by 𝑆 and 𝑆𝑑 are the same.

Lemma 6. If the cost function satisfies the requirement in Section
5.1, then for any 𝛼 > 0

min

(𝐿,𝐶 ) ∈𝑆 )
𝐿 + 𝛼 ·𝐶 = min

(𝐿,𝐶 ) ∈𝑆𝑑 )
𝐿 + 𝛼 ·𝐶.

In the rest of this appendix section, we will need to use both the

vector and matrix representation of a mechanism. But when we
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discuss a linear combination of two mechanisms, by default, we are

always talking about a linear combination in the vector represen-

tation. Specifically, given two mechanisms P = (𝑝1, · · · , 𝑝𝑚) and
P′ = (𝑝′

1
, · · · , 𝑝′𝑚), for any 𝜆 ∈ [0, 1], we define 𝜆P + (1 − 𝜆)P′ =

(𝜆𝑝1 + (1 − 𝜆)𝑝′
1
, · · · , 𝜆𝑝𝑚 + (1 − 𝜆)𝑝′𝑚). Note that under vec-

tor representation P = (𝑝1, · · · , 𝑝𝑚), the loss function becomes

L(P) = ∑
𝑖 𝑝𝑖 , which is linear in P. This implies that for any P and

P′,
L(𝜆P + (1 − 𝜆)P′) = 𝜆L(P) + (1 − 𝜆)L(P′) .

However, the cost C(P) is only linear under matrix representation.

We will first show that C(P) is convex under vector representation.

Lemma 7. For any two mechanisms P = (𝑝1, · · · , 𝑝𝑚) and P′ =
(𝑝′

1
, · · · , 𝑝′𝑚),

C(𝜆P + (1 − 𝜆)P′) ≤ 𝜆 · C(P) + (1 − 𝜆)C(P′) .

Proof. Let us denote C(𝑋, P) as the cost of matching some input

𝑋 using mechanism P. By definition,

C(P) =
∑︁
𝑋𝑖

Pr(𝑋𝑖 )C(𝑋𝑖 , P) .

If we can show that

C(𝑋, 𝜆P + (1 − 𝜆)P′) ≤ 𝜆C(𝑋, P) + (1 − 𝜆)C(𝑋, P′),
then Lemma 7 naturally follows.

Let us denote 𝑝𝜆
𝑖
= 𝜆𝑝𝑖 + (1 − 𝜆)𝑝′𝑖 and consider how the water-

filling algorithm applies to P𝜆 = (𝑝𝜆
1
, · · · , 𝑝𝜆𝑚). Consider any input

𝑋 and suppose F (𝑋 ) = 𝑘 . Let

𝑙 = min{𝑙 |
𝑙∑︁
𝑖=𝑘

𝑝𝑖 ≥ 1}, 𝑙 ′ = min{𝑙 |
𝑙∑︁
𝑖=𝑘

𝑝′𝑖 ≥ 1},

and 𝑙𝜆 = min{𝑙 | ∑𝑙
𝑖=𝑘

𝑝𝜆
𝑖
≥ 1}. By the water-filling lemma (Propo-

sition 4), P would match 𝑋 to output 𝑖 with probability

𝑝𝑘𝑖 =

{
𝑝𝑖 if 𝑘 ≤ 𝑖 < 𝑙
1 −∑𝑙−1

𝑗=𝑘
𝑝 𝑗 if 𝑖 = 𝑙 .

Similarly, we can define 𝑝′
𝑘𝑖

and 𝑝𝜆
𝑘𝑖

for P′ and P𝜆 . W.l.o.g., we

suppose that 𝑙 ≤ 𝑙 ′. By definition, we have 𝑙 ≤ 𝑙𝜆 ≤ 𝑙 ′. For any
𝑖 ≤ 𝑙 , we have 𝑝𝜆

𝑘𝑖
= 𝜆𝑝𝑘𝑖 + (1 − 𝜆)𝑝′𝑘𝑖 . Therefore, for P

𝜆
, C(𝑋, P𝜆)

can be rewritten as

𝑙𝜆∑︁
𝑖=𝑘

𝑐𝑘𝑖𝑝
𝜆
𝑘𝑖

=

𝑙∑︁
𝑖=𝑘

𝑐𝑘𝑖 (𝜆𝑝𝑘𝑖 + (1 − 𝜆)𝑝′𝑘𝑖 ) +
𝑙𝜆∑︁

𝑖=𝑙+1
𝑐𝑘𝑖𝑝

𝜆
𝑘𝑖

= 𝜆

𝑙∑︁
𝑖=𝑘

𝑐𝑘𝑖𝑝𝑘𝑖 + (1 − 𝜆)
𝑙∑︁
𝑖=𝑘

𝑐𝑘𝑖𝑝
′
𝑘𝑖
+

𝑙𝜆∑︁
𝑖=𝑙+1

𝑐𝑘𝑖𝑝
𝜆
𝑘𝑖
.

The first term is actually 𝜆C(𝑋, P). We can rewrite

C(𝑋, P𝜆) − 𝜆C(𝑋, P) + (1 − 𝜆)C(𝑋, P′)

=

𝑙 ′∑︁
𝑖=𝑙+1

𝑐𝑘𝑖 (𝑝𝜆𝑘𝑖 − (1 − 𝜆)𝑝
′
𝑘𝑖
) .

Since the water-filling algorithm sets 𝑝𝜆
𝑘𝑖

to 𝑝𝜆
𝑖
≥ (1 − 𝜆)𝑝′

𝑖
for all

𝑖 ∈ [𝑙 + 1, 𝑙𝜆), we have that, for any 𝑗 ∈ [𝑙 + 1, 𝑙𝜆], ∑𝑗

𝑖=𝑙+1 𝑝
𝜆
𝑘𝑖
≥

(1−𝜆)∑𝑗

𝑖=𝑙+1 𝑝
′
𝑘𝑖
. Combining this with the fact that 𝑐𝑘𝑖 is increasing

with 𝑖 , we have

𝑙 ′∑︁
𝑖=𝑙+1

𝑐𝑘𝑖𝑝
𝜆
𝑘𝑖

=

𝑙𝜆∑︁
𝑖=𝑙+1

𝑐𝑘𝑖𝑝
𝜆
𝑘𝑖
≤ (1 − 𝜆)

𝑙𝜆∑︁
𝑖=𝑙+1

𝑐𝑘𝑖𝑝
′
𝑘𝑖
.

The argument here is very similar to the analyses in the proof

of Theorem 1. Therefore, we have C(𝑋, P𝜆) − 𝜆C(𝑋, P) + (1 −
𝜆)C(𝑋, P′) ≤ 0, which concludes our proof. □

With Lemma 6 and 7, we are ready to prove Theorem 4.

Proof. Let 𝐶 (𝑙) = inf{𝐶 : (𝑙,𝐶) ∈ 𝑆}. By Lemma 7, 𝐶 (·) must

be a convex function. We first show that

𝐶 (𝑣) = 𝜆𝐶 (⌊𝑣⌋) + (1 − 𝜆)𝐶 (⌈𝑣⌉).
Suppose this is not true and 𝐶 (𝑣) ≠ 𝜆𝐶 (⌊𝑣⌋) + (1 − 𝜆)𝐶 (⌈𝑣⌉).

Since𝐶 (·) is convex, it must be that𝐶 (𝑣) < 𝜆𝐶 (⌊𝑣⌋) + (1−𝜆)𝐶 (⌈𝑣⌉).
This means that (𝑣,𝐶 (𝑣)) is outside the convex hull spanned by

{(1,𝐶 (1), (2,𝐶 (2)), · · · }, which also implies that (𝑣,𝐶 (𝑣)) is also
not in the convex hull of 𝑆𝑑 . We reach a contradiction here, since

by Lemma 6, the convex hull of 𝑆𝑑 is the same as the convex hull

of 𝑆 .

For any P⌊𝑣⌋ ∈ DS⌊𝑣⌋ and P⌈𝑣⌉ ∈ DS⌈𝑣⌉ , by Lemma 7,

C(𝜆P⌊𝑣⌋ + (1 − 𝜆)P⌈𝑣⌉ ) ≤ 𝜆C(P⌊𝑣⌋ ) + (1 − 𝜆)C(P⌈𝑣⌉ ) = 𝐶 (𝑣).
This means that 𝜆P⌊𝑣⌋ + (1−𝜆)P⌈𝑣⌉ must be the optimal mechanism

under budget 𝑣 . This concludes our proof. □

G FURTHER DESCRIPTION OF OPTIMAL
MAXIMAL LEAKAGE PROTOCOL

It is note that for log(𝑣)-MaxL with non-integer 𝑣 , both the cost

function and the privacy function are linear with respect to the ele-

ments inDS⌊𝑣⌋ andDS⌈𝑣⌉ , and the optimal solution is in a weighted

average of two arbitrary deterministic solutions from DS⌊𝑣⌋ and
DS⌈𝑣⌉ , respectively. Theorem 4 shows that it suffices to find opti-

mal deterministic schemes in DS𝑣 (or DS⌊𝑣⌋ and DS⌈𝑣⌉ ), formally

described as the main protocol of Algorithm 2. In sub-algorithm 1

and 2 of Algorithm 2, we show how to find an optimal deterministic

scheme by dynamic programming in 𝑂 (𝑛 ·𝑚2) time.

To be specific, we introduce a sub-algorithmT (𝑖, 𝑘) (sub-algorithm
2 in Algorithm 2) that considers the optimal deterministic mecha-

nism when (1) 𝑝1, · · · , 𝑝𝑖−1 are given and 𝑝𝑖−1 = 1; and (2)

∑𝑚
𝑗=𝑖 𝑝 𝑗

equals 𝑘 . This condition means that given the current selection of

𝑝1, · · · , 𝑝𝑖−1, we still need to pick 𝑘 additional states within [𝑎 :𝑚].
Note that there are totally 𝑛 ·𝑚 possible inputs for T (·, ·). For any
T (𝑖, 𝑘) such that 𝑘 > 0, we consider the next state to select in the

optimal scheme, i.e., the minimal 𝑗 ≥ 𝑖 such that 𝑝 𝑗 = 1. Once 𝑗

is given, T (𝑖, 𝑘) is reduced to the sub-problem T ( 𝑗, 𝑘 − 1). This
means that T (𝑖, 𝑘) can be solved once we solve T ( 𝑗, 𝑘 − 1) for all
𝑗 ≥ 𝑖 . Therefore, we can use dynamic programming to solve the

problem and the time complexity is 𝑂 (𝑛 ·𝑚2).
Suppose the optimal deterministic mechanism under the above

conditions is {𝑝𝑖 𝑗 } and its vector representation is (𝑝1, · · · , 𝑝𝑚),
the sub-algorithm T (𝑎, 𝑘) returns two outputs:

• T (𝑎, 𝑘) .𝐶𝑜𝑠𝑡 : the sum of cost for any 𝑋𝑖 such that F (𝑋𝑖 ) ≥
𝑎, i.e.,

∑
(𝑖 | F (𝑋𝑖 )≥𝑎) 𝑞𝑖

∑𝑚
𝑗=1

𝑐𝑖 𝑗𝑝𝑖 𝑗 . Note that we assume

𝑝1, · · · , 𝑝𝑎−1 are given and 𝑝𝑎−1 = 1, so for any 𝑋𝑖 such that
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F (𝑋𝑖 ) ≤ 𝑎 − 1, they would be assigned to states no higher

than 𝑎 − 1. To optimize the cost, it suffices to consider only

F (𝑋𝑖 ) ≥ 𝑎.
• T (𝑎, 𝑘) .𝑁𝑒𝑥𝑡 : the next state we select, or in other words, the

smallest 𝑖 such that 𝑖 ≥ 𝑎 and 𝑝𝑖 = 1.

Note that T (𝑎, 𝑘).𝑁𝑒𝑥𝑡 only has (𝑚−𝑎+1) possibilities. Therefore,
we can then iterate through all possible choices and use dynamic

programming to find the optimal deterministic schemes, i.e.,

T (𝑎, 𝑘).𝑁𝑒𝑥𝑡

= arg min

𝑎≤𝑎′≤𝑚
T (𝑎′ + 1, 𝑘 − 1).𝐶𝑜𝑠𝑡 +

∑︁
𝑎≤F(𝑋𝑖 )≤𝑎′

𝑞𝑖𝑐𝑖𝑎′ .

After we obtain T (𝑎, 𝑘).𝑁𝑒𝑥𝑡 , we can then calculate T (𝑎, 𝑘).𝐶𝑜𝑠𝑡
straightforwardly.

H PROOF OF THEOREM 5
We will use the following result from Theorem 4.3 in [16].

Lemma 8 ([16]). Let P and Q be two continuous probability distri-
butions on an interval 𝐼 with finite entropy with probability density
function 𝑝 and 𝑞, respectively. Assume 𝑝 (𝑧) > 0 for 𝑧 ∈ 𝐼 . If

−
∫
𝐼

𝑞(𝑧) log 𝑝 (𝑧)𝑑𝑧 = h(P), (41)

then h(Q) ≤ h(P), with equality if and only if P = Q .

By Lemma 8. we first prove the following fact: for all continuous

distributions D𝑒 supported on [0, 𝑅] with second moment equaling

𝐵0, i.e.,

∫ 𝑅
0
𝑧2 · P(𝑒 = 𝑧)𝑑𝑧 = 𝐵0, the distribution with the maximal

entropy must be in a form where 𝑝 (𝑧) = 𝑒−(𝑐1 ·𝑧2+𝑐2 )
for 𝑧 ∈ [0, 𝑅]

with some 𝑐1 and 𝑐2 dependent on 𝐵0 and 𝑅. Now, substitute such

constructed P into (41), we have that for any distribution Q within

[0, 𝑅] and with a second moment equaling 𝐵0,

−
∫ 𝑅

0

𝑞(𝑧) log𝑝 (𝑧)𝑑𝑧 =
∫ 𝑅

0

𝑞(𝑧) (𝑐1 · 𝑧2 + 𝑐2))𝑑𝑧

= 𝑐1𝐵0 + 𝑐2 .

(42)

On the other hand, the entropy h(P) of constructed P equals

h(P) =
∫ 𝑅

0

−𝑝 (𝑧) log(𝑝 (𝑧))𝑑𝑧 =
∫ 𝑅

0

(𝑐1 · 𝑧2 + 𝑐2) · 𝑝 (𝑧)𝑑𝑧

= 𝑐1𝐵0 + 𝑐2 .

(43)

In both (42) and (43), we use the fact that P and Q are distributions

supported on [0 : 𝑅], i.e.,
∫ 𝑅
0
𝑝 (𝑧)𝑑𝑧 =

∫ 𝑅
0
𝑞(𝑧)𝑑𝑧 = 1, and are of

the same second moment, i.e.,

∫ 𝑅
0
𝑧2 · 𝑝 (𝑧)𝑑𝑧 =

∫ 𝑅
0
𝑧2 ·𝑞(𝑧)𝑑𝑧 = 𝐵0.

Therefore, for distributions on [0 : 𝑅] with a fixed second moment,

the one with the maximal entropy is with probability density in a

form 𝑝 (𝑧) ∝ 𝑒−𝑐1 ·𝑧2

.

With a similar reasoning, we can also prove that for any distri-

bution supported on [0 : 𝑅] with a fixed mean 𝜇0 and a second

moment 𝐵0, the one with the maximal entropy has a probability

density function in a form 𝑝 (𝑧) = 𝑒−(𝑐′1 ·𝑧2+𝑐′
2
·𝑧+𝑐′

3
)
. For any Q with

mean 𝜇0 and a second moment 𝐵0, we have

−
∫ 𝑅

0

𝑞(𝑧) log 𝑝 (𝑧)𝑑𝑧 =
∫ 𝑅

0

𝑞(𝑧) (𝑐′
1
· 𝑧2 + 𝑐′

2
· 𝑧 + 𝑐′

3
)𝑑𝑧

= 𝑐′
1
𝐵0 + 𝑐′2𝜇0 + 𝑐′3 = −

∫ 𝑅

0

𝑝 (𝑧) log 𝑝 (𝑧)𝑑𝑧 = h(P) .
(44)

With the above preparation, now we go back to our objective

function in (30),

min

D𝑒 ,E[𝑒2 ]≤𝐵
obj(𝜎2

𝑒 ,D𝑒 ) =
1

2

·
(
log(2𝜋 (𝜎2

𝑌 + 𝜎
2

𝑒 )) + 1

)
− h(𝑒).

First, it is noted minD𝑒 ,E[𝑒2 ]≤𝐵 obj(𝜎2

𝑒 ,D𝑒 ) is equivalent to

min

𝜎2

𝑒 ∈[0,𝐵 ],𝐵0∈[0:𝐵 ]
min

D𝑒 ,E[𝑒2 ]=𝐵0

obj(𝜎2

𝑒 ,D𝑒 ) . (45)

It is noted that once the variance 𝜎2

𝑒 and second moment 𝐵0 of the

noise 𝑒 is given, by (11), the mean of the noise is also determined as

𝜇2

𝑒 = 𝐵0 − 𝜎2

𝑒 . Therefore, suppose the optimal solution D𝑒 to (30) is

of a variance 𝜎2

𝑜 with the second moment 𝐵𝑜 , which consequently

determines the optimal mean as 𝜇2

𝑜 = 𝐵𝑜 −𝜎2

𝑜 . Then, we know given

the mean 𝐵𝑜 and 𝜇𝑜 , the optimal distribution to minimize (30) (with

the maximal entropy conditional on 𝐵𝑜 and 𝜇𝑜 ) is achievable within

the class of truncated Gaussian distributions.

As a final remark, we want to mention the necessary and suffi-

cient condition that (30) is tight for the min-max problem in (29)

or when the equality of ℎ(𝑌 + 𝑒) ≤ 1

2
·
(
log(2𝜋 (𝜎2

𝑌
+ 𝜎2

𝑒 )) + 1

)
is

achievable.

This is equivalent to the following question when there exists

some distribution D𝑌 of 𝑌 such that for the given noise distribution

D𝑒 of 𝑒 , 𝑌 + 𝑒 can be distributed in a Gaussian distribution when 𝑌

and 𝑒 are independent. Let FT𝑌 (𝑤) and FT𝑒 (𝑤) be the Fourier trans-
form of 𝑌 and 𝑒 , respectively. Also, let FT𝐺 (𝑤) be the Fourier trans-
form of a Gaussian distribution with the same mean and variance as

those of𝑌 +𝑒 . Since the distribution of𝑌 +𝑒 is the convolution of that
of 𝑌 and 𝑒 , we have that FT𝑌+𝑒 (𝑤) = FT𝑌 (𝑤) + FT𝑒 (𝑤). If there ex-
ists 𝑌 such that 𝑌 + 𝑒 is a Gaussian, i.e., FT𝑌+𝑒 (𝑤) = FT𝐺 (𝑤), then
FT𝑌 (𝑤) = FT𝐺 (𝑤)/FT𝑒 (𝑤) . Thus, given that Fourier transform

is invertible, the sufficient and necessary condition with respect

to the existence of 𝑌 becomes that FT𝐺 (𝑤)/FT𝑒 (𝑤) . is a Fourier
coefficient of a distribution. By Fourier inverse theorem, this is

equivalent to require the inverse of FT𝐺 (𝑤)/FT𝑒 (𝑤) . needs to be

non-negative and this is equivalent to that FT𝐺 (𝑤)/FT𝑒 (𝑤). needs
to be positive definite functions, by Bochner’s theorem.
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min

𝜇,𝜎
Obj(𝜇, 𝜎) = 1

2

· log

(
𝜎2

𝑌 + 𝜎
2

[
1 − 𝛽𝜑 (𝛽) − 𝛼𝜑 (𝛼)

Φ(𝛽) − Φ(𝛼) − (
𝜑 (𝛽) − 𝜑 (𝛼)
Φ(𝛽) − Φ(𝛼) )

2

] )
− log

(√
2𝜋𝑒 · 𝜎 (Φ(𝛽) − Φ(𝛼))

)
− 𝛼𝜑 (𝛼) − 𝛽𝜑 (𝛽)

2(Φ(𝛽) − Φ(𝛼)) ,

such that S(𝜇, 𝜎) =
(
𝜇 − 𝜎 · 𝜑 (𝛽) − 𝜑 (𝛼)

Φ(𝛽) − Φ(𝛼)
)
2 + 𝜎2

[
1 − 𝛽𝜑 (𝛽) − 𝛼𝜑 (𝛼)

Φ(𝛽) − Φ(𝛼) − (
𝜑 (𝛽) − 𝜑 (𝛼)
Φ(𝛽) − Φ(𝛼) )

2

]
≤ 𝐵.

(40)
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